Каталог сайтов Arahus.com
назад содержание далее

Книга I. УЧЕНЫЙ И НАУКА

Глава IV. СЛУЧАЙНОСТЬ

I

«Как можно говорить о законах случайности? Разве случайность не представляет собой противоположности всякой законо-мерности?» Этим вопросом Бертран начинает свое «Исчисление вероятностей». Вероятность противоположна достоверности; вероятность — это то, чего мы не знаем и чего поэтому мы, казалось бы, не можем вычислять. В этом содержится противоречие, по крайней мере кажущееся, о котором уже много писали.

Прежде всего, что такое случайность? Древние различали явления, которые, как им казалось, повинуются гармоничным законам, установленным раз навсегда, и другие явления, которые приписывались случаю. К последним относили все то, чего нельзя было предвидеть, что было противно всякому закону. В каждой области точные законы регулировали отнюдь не все. Они намечали лишь границы, в пределах которых возможна игра случая. С этой точки зрения слово «случайность» приобрело объективный смысл. То, что было случайностью для одного, должно было быть случайностью и для других, даже для богов.

Однако в настоящее время мы уже не придерживаемся этого взгляда. Мы сделались абсолютными детерминистами, и даже те, которые склонны сохранить за человеком свободу воли, признают неограниченное господство детерминизма в области неорганического мира. Всякое явление, сколь бы оно, ни было незначительно, имеет свою причину, и бесконечно мощный дух, беспредельно осведомленный в законах природы, мог бы его предвидеть с начала веков. С такого рода духом, если бы он существовал, нельзя было бы играть ни в какую азартную игру, не теряя всего состояния.

Для него слово «случайность» не имело бы смысла или, вернее, для него вовсе не существовало бы случайности. Лишь вследствие нашей слабости, вследствие нашего невежества случайность для нас существует. Можно даже оставить в стороне слабость человеческой природы; то, что представляется случайным для невежды, отнюдь не будет таковым для ученого. Случайность является, таким образом, как бы мерой нашего невежества. Случайными явлениями, согласно этому определению, будут те, законы которых нам неизвестны.

Но достаточно ли это определение? Когда первые халдейские пастухи следили за движением светил, они не знали еще законов астрономии; но приходило ли им в голову сказать, что движение светил предоставлено случаю?

Когда современный физик изучает новое явление, закон которого он открыл во вторник, то говорил ли он в понедельник, что это явление случайное? Но мало того. Не прибегают ли часто для предсказания явления к тому, что Бертран называет законом случайностей? Так, например, в кинетической теории газов мы приходим к известным законам Мариотта и Гей-Люссака именно благодаря той гипотезе, что скорости молекул газа меняются совершенно случайно. Наблюдаемые законы, скажут физики, были бы, менее просты, если бы скорости регулировались простым элементарным законом, если бы молекулы были, как говорят, организованы, если бы они подчинялись какому-нибудь распорядку. Именно благодаря господству случая, т. е. именно благодаря нашему невежеству, мы имеем возможность делать заключения. И далее, если слово «случай» является простым синонимом нашего невежества, то что же это значит? Надо ли это толковать, примерно, следующим образом.

«Вы желаете, чтобы я предсказал вам явления, которые должны произойти? Если бы я имел несчастье знать законы этих явлений, то я мог бы этого достигнуть разве только путем непроходимого леса вычислений, и я должен был бы отказаться от ответа. Но так как, к счастью, я этих законов не знаю, то я вам сейчас отвечу, и, что наиболее странно, мой ответ будет верен».

Ясно, что случайность должна быть чем-то иным, не одним лишь названием, которое мы даем собственному невежеству. Ясно, что между явлениями, истинные причины которых нам неизвестны, мы должны были бы различать случайные явления, относительно которых вероятностные расчеты дадут нам некоторые предварительные сведения, и явления, которые не являются случайными и относительно которых мы не можем сказать ничего, пока не узнаем законов, которые ими управляют.

Что касается явлений случайных, то ясно, что сведения, которые нам дает о них теория вероятностей, не перестанут быть справедливыми в тот день, когда мы получим об этих явлениях больше сведений.

Директор общества страхования жизни не знает, когда умрет каждое из застрахованных у него лиц, но он вычисляет на основании теории вероятностей и по закону больших чисел и при этом не ошибается, поскольку он делит дивиденды между акционерами. Эти дивиденды не исчезли бы даже и в том случае, если бы какой-либо врач, столь же прозорливый, сколь и нескромный, после подписания полисов осведомлял бы директора о шансах на жизнь застрахованных лиц. Такой врач рассеял бы неосведомленность директора, но он не оказал бы влияния на дивиденды, которые, очевидно, вовсе не являются продуктами этой неосведомленности.

II

Чтобы найти лучшие определения случайности, нам необходимо исследовать некоторые из тех фактов, которые обыкновенно принято считать случайными и к которым, по-видимому, применяется теория вероятностей.

Первым примером, на котором мы остановимся, будет вопрос о неустойчивом равновесии. Если конус стоит на вершине, то мы знаем, что он опрокинется, но мы не знаем, в какую сторону. Нам представляется, что это полностью зависит от случая. Если бы конус был совершенно симметричен, если бы ось его была совершенно вертикальна, если бы он не был подвержен действию никакой силы, кроме тяжести, то он не упал бы вовсе. Но малейший изъян в симметрии заставил бы его слегка наклониться в ту или иную сторону; наклонившись же, хотя бы и весьма незначительно, он упадет в сторону наклона окончательно. Если бы даже симметрия была совершенна, то самого легкого дрожания, легчайшего дуновения ветерка было бы достаточно, чтобы наклонить его на несколько секунд дуги; и этим не только было бы решено его падение, было бы предопределено и направление этого падения, которое совпало бы с направлением первоначального наклона. Таким образом, совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которого мы не можем предусмотреть, и тогда мы говорим, что это явление представляет собой результат случая.

Если бы мы знали точно законы природы и состояние Вселенной в начальный момент, то мы могли бы точно предсказать состояние Вселенной в любой последующий момент. Но даже и в том случае, если бы законы природы не представляли собой никакой тайны, мы могли бы знать первоначальное состояние только приближенно. Если это нам позволяет предвидеть дальнейшее ее состояние с тем же приближением, то это все, что нам нужно. Мы говорим, что явление было предвидено, что оно управляется законами. Но дело не всегда обстоит так; иногда небольшая разница в первоначальном состоянии вызывает большое различие в окончательном явлении. Небольшая погрешность в первом вызвала бы огромную ошибку в последнем. Предсказание становится невозможным, мы имеем перед собой явление случайное.

Второй пример, на котором мы остановимся, будет в большой мере аналогичен первому; мы заимствуем его из метеорологии. Почему метеорологам так трудно предсказать погоду сколько-нибудь достоверно? Почему выпадение дождя, наступление грозы всегда представляется нам делом случая, так что многие люди находят естественным молиться о ниспослании дождя или хорошей погоды, те самые люди, которые считали бы смешным испрашивать молитвой затмение. Мы видим, что большие пертурбации бывают обыкновенно в тех местах, где атмосфера находится в состоянии неустойчивого равновесия. Метеорологи часто хорошо видят, что равновесие неустойчиво, что образуется циклон, но где именно, они не в состоянии сказать. Лишняя десятая градуса в какой-либо точке — и циклон разражается здесь, а не там; он бушует над странами, которые были бы пощажены, если бы не эта десятая. Если бы мы могли знать эту десятую градуса, то мы могли бы это предсказать; но сеть наблюдений недостаточно густа и сами наблюдения недостаточно точны, а именно поэтому нам и кажется, что все обусловлено случаем. Здесь мы вновь находим то же несоответствие между мельчайшей, неощутимой наблюдателем причиной и значительным эффектом, вызывающим иногда страшные последствия.

Перейдем к другому примеру — к распределению малых планет по зодиаку. Их начальные долготы могли быть какие угодно, но их средние движения были различны, и они двигались уже так долго, что в настоящее время можно спокойно сказать, что они распределены вдоль зодиака совершенно случайно. Незначительные разности в их начальных расстояниях от Солнца и, что сводится к тому же, в их среднем движении в конце концов дали огромное различие в долготах, которые они теперь имеют. В самом деле, разница в одну тысячную долю секунды их суточного пути дает уже секунду за три года, градус — приблизительно за 10000 лет и целую окружность — за три-четыре миллиона лет; но что это составляет по сравнению со временем, которое протекло с тех пор, как малые планеты отделились от туманности Лапласа! Перед нами опять ничтожная причина и большой эффект или, иначе, небольшие разности в причине и большие — в действии.

Игра в рулетку отличается от этого примера меньше, чем это может казаться на первый взгляд. Представим себе иглу, которая вращается на шпиле в центре циферблата, разделенного на сто секторов, попеременно красных и черных. Если игла останавливается на красном секторе, то игра выиграна, в противном случае — проиграна. Все, очевидно, зависит от толчка, который мы первоначально сообщаем игле. Игла сделает, скажем, 10 или 20 оборотов, но остановится она раньше или позже, смотря по тому, толкнул ли я ее сильнее или слабее. Однако достаточно, чтобы толчок изменился на тысячную или на две тысячных доли, и игла остановится на черном или соответственно на следующем красном секторе. Это— различия, которые не могут быть восприняты мускульным чувством, которые ускользают даже и от более тонких инструментов. Я лишен, следовательно, возможности предвидеть, что произойдет с иглой, которую я только что толкнул, а потому мое сердце бьется, и я с нетерпением ожидаю, что мне даст случай. Разность в причине совершенно неощутима, разность в результате имеет для меня чрезвычайно большую важность, потому что речь идет о всей моей ставке.

III

Позвольте мне теперь сделать отступление, несколько странное для моей темы. Один философ несколько лет тому назад сказал, что будущее определено прошлым, но что прошлое не определено будущим. Иными словами: зная настоящее, мы могли бы сделать заключение относительно будущего, но не относительно прошлого, ибо, сказал бы он, определенная причина всегда должна привести к одному результату, но один и тот же результат может быть вызван множеством различных причин. Ясно, что ни один ученый не подпишется под этим выводом. Законы природы связывают предшествующее с последующим таким образом, что предшествующее определено последующим так же, как последующее предшествующим. Но в чем же может заключаться источник ошибки, допущенной этим философом? Как известно, в силу принципа Карно физические явления необратимы, и мир стремится к полному однообразию. Когда два тела различной температуры находятся в соприкосновении, то более теплое уступает тепло холодному; мы можем, таким образом, предвидеть, что температура сравняется. Но когда температура уже сравняется, и нас спросят о том, что было раньше, что сможем мы ответить? Мы скажем, конечно, что одно тело было более нагрето, а другое менее, но мы не сумеем угадать, какое из них было прежде более теплым.

Между тем в действительности температуры никогда не сделаются совершенно равными. Разность температур стремится к нулю лишь ассимптотически, и наступает момент, когда наши термометры уже неспособны ее распознать. Но если бы мы имели термометры в тысячу раз, в сто тысяч раз более чувствительные, то мы убедились бы, что есть еще небольшая разница и что одно из двух тел осталось более теплым, чем другое, и тогда мы могли бы утверждать, что именно это тело было некогда более теплым.

Мы видим здесь, в противоположность предыдущим примерам, большие различия и причинах и ничтожные — в результатах. Фламмарион придумал как-то наблюдателя, который удаляется от Земли со скоростью большей, чем скорость света. Для него время изменило бы знак, история потекла бы вспять, и Ватерлоо предшествовало бы Аустерлицу. Ясно, что для такого рода наблюдателя результаты и причины заменили бы друг друга, неустойчивое равновесие не было бы исключением, вследствие общей необратимости явлений ему казалось бы, что все исходит из какого-то хаоса в неустойчивом равновесии. Вся природа казалась бы ему предоставленной случаю.

IV

Мы обратимся теперь к другим примерам, в которых мы увидим совершенно другие свойства. Начнем с кинетической теории газов. Как должны мы представлять себе.сосуд, наполненный газом? Бесчисленные молекулы, несущиеся с большими скоростями, бороздят сосуд во всех направлениях. В любой момент они ударяются о стенки и друг о друга, и эти столкновения происходят в самых разнообразных условиях. Здесь нас больше всего поражает не столько малость причин, сколько их сложность. И все-таки первоначальный элемент находится здесь и играет важную роль. Если бы молекула уклонилась налево или направо от своей траектории на очень малую величину, сравнимую с радиусом действия молекул газа, то она избежала бы толчка или таковой произошел бы при совершенно иных условиях, а это могло бы изменить на 90 или 180 направление скорости после толчка. И это еще не все. Как мы видели, достаточно отклонить молекулу до толчка на бесконечно малое расстояние, чтобы она после толчка отклонилась на конечное расстояние. Поэтому, если бы молекула подверглась двум последовательным столкновениям, то ей достаточно было бы сообщить до первого толчка бесконечно малое уклонение второго порядка , чтобы мы получили после первого столкновения бесконечно малое уклонение первого порядка, а после второго - конечное. Между тем молекула испытывает не только два столкновения, а весьма большое число их в секунду. Поэтому, если первый толчок умножает отклонение на весьма большое число A, то после n столкновений оно будет умножено на . Оно сделается, следовательно, весьма большим не только потому, что A очень велико, т.е. потому, что малые причины производят большие следствия, но и потому, что показатель n велик, т.е. потому, что столкновения весьма многочисленны и причины очень сложны.

Обратимся теперь к другому примеру. Почему нам кажется во время ливня, что капли дождя распределены совершенно случайно? Это опять-таки происходит оттого, что причины, которыми обусловливается их образование, очень сложны. Ионы были распространены в атмосфере задолго до ливня, задолго до него они были подвержены постоянно меняющимися токами воздуха, они были увлечены в вихри весьма малых размеров, так что окончательное распределение их не находилось уже ни в каком соответствии с начальным. Затем температура внезапно понижается, туман сгущается, и каждый из этих ионов становится центром капли дождя. Чтобы установить, каково будет распределение капель и сколько их упадет на каждый каменнь мостовой, недостаточно было бы узнать начальное положение ионов. Необходимо было бы учесть действие тысячи слабых и прихотливых воздушных течений.

Совершенно то же имеет место, когда пылинки взвешены в воде. Сосуд изборожден токами, законы которых нпм неизвестны. Мы знаем только, что они очень слоны; по истечении некотороговремени пылинки будут распределены случайно, т.е. равномерно по всему сосуду: и это обусловливается именно сложностью потоков. Если бы они подчинялись простому закону, если бы, например, сосуд сосуд был круглый и токи бы описывали круги вокруг оси сосуда., то дело бы обстояло иначе, ибо каждая пылинка оставалась бы на той же высоте и на том же расстоянии от оси.

Мы пришли бы к тому же результату, если бы мы рассматривали смесь двух жидкостей или смесь двух мелко истолченных порошков. Чтобы привести еще грубый пример, скажем, что приблизительно то же самое происходит, когда мы тасуем игральные карты. При каждой перетасовке карты подвергаются перемещению (аналогично тому, которое мы изучаем в теории перестановок). Какое же расположение карт получится в результате? Вероятность того, что получится некоторое определенное расположение (например, то, прикотором на n -месте оказывается карта, занимавшая до перетасовки f (n)-е место), зависит от привычки игрока. Но если игрок тасует карты довольно долго, то образуется множество последовательных перестановок, т.е. сложностью всего явления.

Еще два слова о теории ошибок. Здесь причины особенно сложны и особенно многообразны. Сколько ловушек должен избежать наблюдатель, располагая даже лучшими инстркментами. Он должен приучить себя замечать наиболее опасные и избегать их. Их называют систематическими ошибками. Но даже когда он их устранил, - допуская, что это ему удалось, - остается много мелких ошибок, которые, накапливаясь, могут оказаться опасными. Таким образом, возникают случайные ошибки; мы приписываем их случаю, потому что причины их слишком сложны и многочисленны; и здесь мы имеем только мелкие причины; каждая из которых производит незначительный эффект, но вследствие их взаимодействия и вследствие значительного их числа результаты становятся серьезными.

V

Можно стать еще на третью точку зрения, которая имеет меньшее значение, чем предыдущие, и на которой я буду менее настаивать. Когда хотят предсказать какой-либо факт и исследуют подготавливающие его обстоятельства, стараются получить сведения о предшествующем состоянии. Но этого ведь нельзя сделать по отношению ко всей Вселенной. Мы ограничиваемся поэтому местами, соседними с пунктом, где наше явление должно произойти, и тем, что, по-видимому, имеет связь с этим явлением. Выяснение обстоятельств не может быть полным, и нужно уметь сделать выбор. Но при таких условиях легко может случиться, что мы оставили в стороне такого рода факты, которые на первый взгляд казались совершенно чуждыми предусматриваемому явлению, которым нам даже в голову не приходило приписать какое-либо влияние на это явление и которые, тем не менее, помимо нашего предвидения, играют здесь важную роль.

Человек проходит по улице, отправляясь по своим делам. Лицо, которое было бы в курсе этих дел, могло бы сказать, почему он прошел в таком-то часу по такой-то улице. На крыше работает кровельщик; подрядчик, который его нанял, вероятно, в известной мере мог бы предвидеть, что он там делает. Но прохожий, о котором была речь выше, не думает вовсе о кровельщике, как и кровельщик не думает о прохожем. Они принадлежат точно двум совершенно отдельным мирам; и тем не менее кровельщик уронил черепицу, которая убила прохожего. Мы, не колеблясь, скажем, что это дело случая.

Наши слабые силы не дают нам возможности охватить всей Вселенной, и это заставляет нас разрезать ее на слои. Мы стараемся выполнить это наименее искусственно, и тем не менее иногда оказывается, что два различных слоя влияют один на другой. Результаты такого взаимодействия мы склонны приписывать случаю.

Есть ли это особая третья точка зрения на случайность? Не всегда; в большей части случаев мы здесь возвращаемся к первой или ко второй точке зрения. Если два мира, вообще, совершенно отличные один от другого, оказывают иногда друг на друга влияние, то законы этого взаимодействия неизбежно должны быть весьма сложны; а с другой стороны, достаточно весьма слабого изменения в начальных условиях, и взаимодействие между этими двумя мирами не имело бы места. Как мало было бы нужно, чтобы прохожий прошел на одну секунду раньше или чтобы кровельщик уронил свою черепицу на одну секунду позже.

VI

Все изложенное до сих пор еще не объясняет, почему случай повинуется законам. Достаточно ли, чтобы причины были незначительны или чтобы они были сложны, для того чтобы мы могли уже предвидеть если не результаты каждого случая, то по крайней мере средние результаты. Чтобы ответить на этот вопрос, лучше всего обратиться к одному из приведенных уже выше примеров.

Я начну с рулетки. Я сказал, что точка, на которой остановится игла, будет зависеть от начального толчка, который ей дан. Какова вероятность того, что этот толчок будет иметь ту или другую величину? Я об этом ничего не знаю, но мне трудно не допустить, что эта вероятность выражается непрерывной аналитической функцией. Тогда вероятность того, что толчок содержится между а и a+ e, будет практически такая же, как и вероятность того, что он заключен между a+ e и а + 2e, лишь бы e было очень мало. Это общее свойство всех аналитических функций: небольшие изменения функций будут пропорциональны небольшим изменениям переменных.

Но, как мы предположили, весьма малого изменения силы толчка будет достаточно для изменения цвета сектора, перед которым в конце концов остановится игла. При интервале от а до a+e это будет красный сектор, при интервале от а+e до а+2e это будет черный сектор. Вероятность каждого красного сектора такая же, как и вероятность следующего за ним черного, и общая вероятность красного та же, что и общая вероятность черного.

Данной в этой задаче является аналитическая функция, которая выражает вероятность определенного начального толчка. Но теорема остается справедливой, каково бы ни было это данное, так как она зависит от свойства, общего всем аналитическим функциям. Отсюда следует, что в конечном результате данное нам вовсе не нужно.

То, что мы сказали о рулетке, применяется также к примеру малых планет. Мы можем смотреть на зодиак как на громадную рулетку, по которой Творец разбросал большое число шариков, сообщив им различные начальные скорости, меняющиеся согласно закону, вообще говоря, произвольному. В настоящее время они распределены равномерно, независимо от этого закона, по той же причине, что и в предыдущем случае. Мы видим также, почему явления повинуются законам случая, когда незначительные разницы в причинах способны вызвать большие различия в результатах. Вероятности этих малых разностей мы можем в этом случае считать пропорциональными самим разностям именно потому, что эти разности очень малы, и незначительные приращения непрерывной функции пропорциональны приращениям переменной.

Перейдем теперь к совершенно другому примеру, где главную роль играет сложность причин. Я предположу, что игрок тасует колоду карт. При каждой перетасовке он меняет порядок карт и может это сделать несколькими способами. Предположим для простоты, что мы имеем только три карты. Карты, которые вначале были расположены в порядке 1 2 3, могут после перетасовки оказаться в одном из шести расположений:

123, 231, 312, 321, 132, 213.

Каждая из этих шести гипотез возможна и соответственно имеет вероятность

p1, р2, р3, p4, р5, р6.

Сумма этих шести чисел равна единице, но это и все, что мы о них знаем. Эти шесть вероятностей зависят от привычек игрока, которых мы не знаем.

При второй тасовке повторится то же и притом в тех же условиях. Я хочу этим сказать, что p4 по-прежнему выражает возможность того, что три карты, которые после n-го взмаха были расположены в порядке 123, расположатся после n+l-ro взмаха в порядке 321; и это остается справедливым, каково бы ни было число n, ибо привычки игрока, его манера тасовать остаются теми же.

Но если число взмахов очень велико, то карты, которые до первого взмаха были расположены в порядке 123, могут после последнего взмаха иметь любое из расположений

123, 231, 312, 321, 132, 213,

и вероятность этих шести гипотез в доступных нам пределах будет одна и та же, т. е. 1/6; и это будет справедливо, каковы бы ни были числа р1, p2, р3, p4, p5, р6, которых мы не знаем. Большое число взмахов, т. е. сложность причин, вызвало это единообразие.

Это без изменения относится и к тому случаю, когда число карт больше трех, но даже и при трех картах доказательство было бы сложно. Я ограничусь тем, что проведу его для случая только двух карт. Тогда мы имеем лишь две гипотезы

12, 21

с соответственными вероятностями р1 и р2=1—р1. Предположим теперь, что сделано n взмахов и что я выигрываю один франк, если карты оказываются в конце концов в первоначальном порядке, и столько же теряю, если они окажутся расположенными в обратном порядке. В таком случае мое математическое ожидание составит

Разность p1—р2, конечно, меньше единицы. Вследствие этого, если n слишком велико, то мое ожидание сведется к нулю. Мы не имеем нужды знать р1 и р2, мы и без того знаем, что игра должна кончиться вничью.

Есть, однако, одно исключение — именно, когда одно из чисел р1 и р2 равно единице, а другое нулю. В этом случае дело будет обстоять иначе, потому что начальные гипотезы слишком просты.

Изложенное относится не только к смеси карт, но и ко всяким смесям, в том числе и к смесям порошков и жидкостей; оно относится и к смесям газовых молекул в кннетичеекой теории газов. Чтобы перейти от изложенных примеров к этой теории, представим себе газ, молекулы которого не могут взаимно сталкиваться, но могут отклоняться только при ударах о стенки сосуда, в который они заключены. Если сосуд имеет достаточно сложную форму, то распределение молекул и скоростей не замедлит стать однородным; этого, однако, не будет, если сосуд имеет форму шара или прямоугольного параллелепипеда. Почему же? Потому что в первом случае расстояние центра от каждой траектории остается постоянным. Во втором случае постоянной остается абсолютная величина угла, составляемого каждой траекторией с гранями параллелепипеда.

Мы видим также, что нужно понимать под очень простыми условиями. Это те условия, которые сохраняют нечто неизменное, которые допускают инварианты. Не слишком ли просты дифференциальные уравнения задачи, чтобы мы могли применить к ней законы случая? На первый взгляд вопрос кажется лишенным точного смысла, но теперь мы понимаем его содержание. Эти дифференциальные уравнения слишком просты, если они сохраняют что-то постоянным, если они допускают общий интеграл. Если что-то из начальных условий остается неизменным, то ясно, что конечное состояние не сможет быть независимым от начального.

Обратимся теперь к теории ошибок. Чем обусловливаются случайные ошибки, мы не знаем, и именно потому, что мы этого не знаем, мы уверены, что они будут подчиняться закону Гаусса, Таков парадокс. Он объясняется приблизительно так же, как и предыдущий случай. Нам нужно знать только одно: что ошибки очень многочисленны, что они очень малы, что каждая из них может столь же легко оказаться отрицательной, как и положительной. Какова кривая вероятностей каждой из них, мы этого не знаем; мы только предполагаем, что это симметричная кривая. Тогда мы можем доказать, что окончательная ошибка будет следовать закону Гаусса, и этот окончательный закон не зависит от частных законов, которые остались для нас неизвестными. Здесь опять-таки простота результата обусловливается сложностью данных.

VII

Однако мы еще не покончили с парадоксами. Выше я воcпользовался выдумкой Фламмариона о человеке, который движется быстрее света и для которого время вследствие этого меняет знак. Я сказал, что ему все явления представлялись бы случайными. С известной точки зрения это справедливо; и все эти явления в некоторый определенный момент не были бы распределены согласно законам случая потому, что они в действительности были бы распределены так же, как и для нас, на глазах которых они разматываются гармонично, не возникая из какого-то первичного хаоса, а мы отнюдь не считаем их результатом случая. Что же это значит? Люмену, человеку Фламмариона, кажется, что незначительные причины приводят к большим эффектам. Почему же явления не протекают для него так же, как для нас, когда мы полагаем, что видим большие результаты, обусловливаемые малыми причинами. Нельзя ли и к его случаю применить то же самое рассуждение?

Возвратимся же к этому рассуждению. Почему в тех случаях, когда незначительные изменения причин вызывают большую разницу в результатах, последние распределяются по законам случайностей? Допустим, что разница в один миллиметр в причине вызывает разницу в один километр в результате. Если я выигрываю всякий раз, когда результат будет соответствовать километру, занумерованному четным числом, то вероятность выигрыша составит половину. Почему же так? Потому, что для этого необходимо, чтобы причина соответствовала миллиметру с четным номером. Между тем, по всей видимости, вероятность, что причина будет меняться в известных пределах, пропорциональна расстоянию между этими пределами, если только последнее очень мало. Не делая этого допущения, мне было бы совершенно невозможно выражать вероятность непрерывной функцией.

Что же произойдет теперь, когда большие причины будут вызывать мелкие результаты. В этом случае мы не приписывали бы явления случаю, между тем как Люмен считал бы их случайными. При разнице в километр в причине мы имели бы разницу в один миллиметр в результате. Будет ли и теперь пропорциональна n вероятность того, что причина заключается в интервале длиною n километров? Мы не имеем никаких оснований это предполагать, ибо расстояние в n километров весьма велико. Но вероятность того, что следствие останется в пределах n миллиметров, будет совершенно та же; она не будет потому пропорциональна числу n, несмотря на то, что расстояние в n миллиметров очень мало. В этом случае закон вероятности результатов невозможно, следовательно, представить непрерывной кривой. Заметим, однако, что в аналитическом смысле слова эта кривая может оставаться непрерывной, т. е. бесконечно малым изменениям абсциссы соответствовали бы бесконечно малые изменения ординаты. Но практически она не будет непрерывной, ибо очень малым изменениям абсциссы не будут соответствовать очень малые изменения ординаты. Я хочу сказать, что нарисовать такую кривую карандашом было бы невозможно.

Что же мы должны отсюда заключить? Люмен не имеет права утверждать, что вероятность причины (его причины, которая для нас является результатом) непременно должна выражаться непрерывной функцией. Но в таком случае почему же имеем на это право мы? Потому, что то состояние неустойчивого равновесия, которое мы выше назвали начальным, само представляет собой конечный момент долгой предшествующей истории. В продолжение этой истории сложные причины действовали и действовали долго: именно они содействовали тому, что образовалось смешение элементов, они стремились придать всему однородный характер, по крайней мере на небольшой части пространства; они закругляли углы, нивелировали горы, заполняли долины: как бы капризна и неправильна ни была первоначальная кривая, которая была им дана, они затратили столько труда на то, чтобы сделать ее правильной, что мы в конце концов получим непрерывную кривую. Вот почему мы можем совершенно спокойно допустить се непрерывность.

Однако Люмен не имел бы права сделать такое заключение; ему сложные причины не представлялись бы факторами правильности и нивелирования; напротив, с его точки зрения они вели бы только к дифференциации и к неравенству; в его глазах из первоначального хаоса разрастался бы мир, все более и более разнородный; изменения, которые он наблюдал бы, были бы для него неожиданными; предусмотреть их он бы не мог; ему казалось бы, что они обусловлены бог весть каким капризом, но это был бы каприз, совершенно не похожий на нашу случайность; он был бы противоположен всякой закономерности,между тем как наши случайности имеют свои законы. Полное выяснение всего этого требовало бы еще более продолжительного изложения, которое, быть может, содействовало бы лучшему пониманию необратимости мироздания.

VIII

Мы старались определить, что такое случайность. Теперь будет уместно спросить: определив таким образом случайность, можем ли мы утверждать, что она имеет объективный характер?

Можно задать себе этот вопрос. Я говорил о причинах, весьма малых и весьма сложных, но не будет ли то, что кажется малым одному, весьма большим для другого, и не будет ли то, что представляется весьма сложным одному, казаться простым другому. Я уже отчасти ответил на этот вопрос, потому что я выше точно указал, в каком случае дифференциальные уравнения становятся слишком простыми, чтобы законы случая оставались применимыми. Но будет полезно вдуматься несколько глубже в этот вопрос, так как возможны и другие точки зрения.

Что означает слово «весьма малый»? Чтобы уяснить его себе, нужно обратиться к тому, что мы сказали выше. Разница весьма мала, интервал весьма мал, если в пределах этого интервала вероятность остается приблизительно постоянной. Но почему же эта вероятность может считаться постоянной в таком небольшом интервале? Именно потому, что мы допускаем, что закон вероятности выражается непрерывной кривой и притом непрерывной не только в аналитическом смысле этого слова, но и практически, как я это старался выяснить выше.

Что же дает нам право делать такое предположение? Как было сказано выше, это происходит оттого, что с начала веков имеются сложные причины, неизменно действующие в одном и том же смысле и постоянно направляющие мир к однородному состоянию, возврат от которого для него невозможен. Эти именно причины мало-помалу отбили выступы и заполнили впадины, и по этой-то причине наши кривые вероятности имеют лишь слабые колебания. Через миллиарды миллиардов веков мы сделаем еще шаг вперед по направлению к единообразию, и эти колебания сделаются еще в десять раз медленнее. Радиус средней кривизны нашей кривой сделается в десять раз больше. И тогда длина, которая сейчас не представляется для нас очень малой, так как на нашей кривой дуга такой длины не может считаться прямолинейной, будет в ту эпоху признана весьма малой, ибо кривизна уменьшится в десять раз и дуга такой длины может быть в доступных нам пределах уподоблена прямой.

Таким образом, понятие о весьма малом все-таки остается относительным; но относительным оно оказывается не по отношению к тому или иному лицу, а по отношению к настоящему состоянию мира. Оно изменит смысл, когда мир станет более единообразным, когда все еще больше смешается, но тогда, несомненно, люди уже не смогут больше жить и должны будут уступить место другим существам, более крупным или более мелким — могу ли я это предсказать? Таким образом, наш критерий остается справедливым для всех людей, и в этом смысле он должен быть признан объективным.

С другой стороны, что должно означать слово «очень сложный»? Я уже дал ответ на этот вопрос и повторил его в начале этой главы. Но возможны и другие толкования. Как мы сказали, сложные причины вызывают все более и более тесное смешение; но сколько же нужно времени, чтобы эта смесь нас удовлетворила? В какой момент мы признаем достаточным накопление сложных элементов? Когда мы признаем достаточной тасовку карт? Если мы смешиваем два порошка — белый и голубой, то наступает момент, когда окраска смеси представляется нам однородной. Это обусловливается, однако, несовершенством наших чувств. Смесь может оказаться уже однородной для дальнозоркого, который должен рассматривать ее издалека, но она не будет таковой для близорукого. Если она станет уже однородной для всякого глаза, то можно будет эту границу отодвинуть еще далее, если мы будем пользоваться оптическими инструментами. Нет, конечно, никаких шансов на то, чтобы какой-нибудь человек мог когда-либо различать все бесконечное многообразие, которое скрывается под видимой однородностью газа, если только верна кинетическая теория. И все же, если принять идеи Гуи о броуновском движении, то микроскоп, по-видимому, находится уже на той ступени, что может обнаружить нам такого рода вещи.

Этот критерий таким же образом является относительным, как и первый; и если он сохраняет характер объективности, то это происходит оттого, что люди одарены приблизительно одними и теми же чувствами, что силы наших инструментов ограничены и что мы пользуемся ими лишь в виде исключения.

IX

С тем же обстоятельством мы встречаемся в гуманитарных науках и, в частности, в истории. Историк должен делать выбор между событиями эпохи, которую он изучает. Он рассказывает только о тех, которые ему кажутся более важными. Он довольствуется поэтому тем, что изложит, скажем, наиболее значительные события XVI века и также наиболее важные факты, относящиеся к XVII веку. Если первых оказывается достаточно, чтобы объяснить вторые, то говорят, что последние согласуются с законами истории. Но если великое событие XVII столетия имеет своей причиной незначительный факт XVI столетия, о котором не сообщает ни один историк и который все оставили в пренебрежении, то говорят, что это событие обусловливается случаем, и слово это имеет, таким образом, то же значение, что в физических науках. Оно означает, что незначительные причины произвели большие действия.

Что может быть в большей мере явлением случайности, как не рождение великого человека! Только случай свел две клетки различных полов, которые содержали каждая со своей стороны те элементы, взаимодействие которых было необходимо для создания гения. Все согласятся, что эти элементы вообще должны быть редки, а такое совпадение должно было быть еще реже. Как мало было бы нужно, чтобы уклонить с пути сперматозоид, который его нес, достаточно было бы отклонить его на десятую долю миллиметра, и Наполеон не родился бы, и судьбы целого материка изменились бы. Никакой другой пример не может лучше выяснить истинных признаков случайности.

Еще несколько слов относительно парадоксов, к которым привело применение теории вероятностей в гуманитарных науках. Доказывали, что ни одна Палата не должна была бы включать ни одного оппозиционного депутата, или по крайней мере это должно было бы быть явлением настолько редким, что за это можно было бы спокойно биться об заклад, ставя при этом миллион против одного су. Кондорсе пытался выяснить, сколько должно быть присяжных, для того чтобы судебная ошибка была практически невозможна. Если мы, однако, вздумали бы пользоваться результатами этого вычисления, то нас, несомненно, ожидало бы такое же разочарование, как и в случае, если бы мы держали пари, основываясь на вычислениях, по которым оппозиция не должна была бы иметь ни одного представителя в Палате.

Законы случая не применяются к этим вопросам. Если суд не всегда руководствуется справедливыми доводами, то он, во всяком случае, пользуется методами Бридуа (1) меньше, чем это можно думать; может быть, это дурно, ибо тогда система Кондорсе избавила бы нас от судебных ошибок.

Что же это значит? Мы пытались приписать случаю факты этого рода, потому что причины их весьма темны. Но здесь нет настоящей случайности. Причины остаются нам, правда, неизвестными; верно и то, что они сложны; но они не в достаточной мере сложны, ибо они нечто сохраняют неизменным. Мы видели, что этим именно и отличаются причины «слишком простые». Когда люди сталкиваются, они не предоставлены уже случаю независимо один от другого, они воздействуют друг на друга. Многочисленные причины оказывают свое влияние, они толкают людей, увлекают их вправо и влево; но есть нечто, чего они не в состоянии разрушить: это их привычки панургова стада (2). Именно это и сохраняется.

X

Применение теории вероятностей к точным наукам также сопряжено с большими трудностями. Почему десятичные знаки таблицы логарифмов или числа p распределены по законам случайности? Я занимался исследованием этого вопроса в другом месте — в применении к логарифмам. Ясно, что небольшая разница в аргументе должна дать незначительную разницу в логарифме, но это может выразиться большой разницей в шестом или седьмом десятичном знаке. Мы приходим, таким образом, к тому же критерию. Но что касается числа p , то здесь представляется затруднение, о котором я не могу сказать ничего путного.

Пришлось бы разобрать много других вопросов, если бы я хотел к ним приступить, не разрешив того, который я себе специально поставил. Когда мы обнаруживаем простой результат, например, когда мы получаем круглое число, мы говорим, что такого рода результат не может быть делом случая, и мы ищем для его объяснения причину не случайную. И действительно, вероятность того, чтобы из десяти тысяч чисел случай привел нас к круглому числу, скажем, именно к числу 10 000, очень незначительна; она составляет один шанс из десяти тысяч. Но есть также один шанс из десяти тысяч, что мы пришли бы к любому из остальных чисел. И все-таки такой результат нас не удивит, и мы спокойно припишем его случаю. И это только потому, что он менее бросается з глаза.

В чем же тут дело? Есть ли это простая иллюзия с нашей стороны или бывают случаи, в которых эта точка зрения законна? Нужно думать, что это так, ибо иначе никакая наука не была бы возможна. Что делаем мы, когда хотим проконтролировать какую-либо гипотезу? Мы не можем проверить все ее выводы, потому что таковых имеется бесчисленное множество. Мы ограничиваемся тем, что выверяем некоторые и в благоприятном случае объявляем гипотезу установленной, ибо такое число совпадений не могло быть делом случая. По существу это то же самое рассуждение.

Я не имею возможности здесь вполне его оправдать, так как это потребовало бы слишком много времени, но я могу сказать по крайней мере следующее. Мы стоим перед двумя гипотезами: либо здесь действует простая причина, либо же совокупность сложных причин, которую мы называем случаем. Мы считаем естественным допустить, что первая вызывает простой результат; поэтому, когда мы констатируем простой результат, например круглое число, нам представляется гораздо более правдоподобным приписать его простой причине, которая почти наверное должна была к нему привести, чем случайности, которая могла его дать только с вероятностью один на десять тысяч. Иначе будет обстоять дело, когда мы обнаружим не простой результат. Случай, конечно, тоже приведет к нему с вероятностью один на десять тысяч, но зато простая причина не имеет шансов его воспроизвести.

(1) Бридуа комическая фигура судьи в романс Ф. Рабле «Гаргантюа и Пантагрюэль», выносившего приговоры с помощью игральных костей.— Прим. ред.

(2) Имеется в виду эпизод из романа Ф. Рабле «Гаргантюа и Пантагрюэль» в котором Панург бросил с корабля в море барана, и за ним устремилось за борт все стадо.— Прим.ред.


назад содержание далее
Используются технологии uCoz