ионизационная история вселенной

3.1. Неизбежность рекомбинации водорода

Физика реликтового излучения тесным образом связана с кинетикой взаимодействия квантов и электронов, поскольку именно электроны являются наиболее лёгкими заряженными частицами, аннигилировавшими с позитронами в процессе остывания Вселенной в эпоху, когда её температура падала до значения 109 К. Остаточные электроны, уже будучи нерелятивистскими, являются важнейшим фактором возможных искажений спектра реликтового излучения в эпоху с $z < 10^7$, когда комптоновское рассеяние является доминирующим механизмом еу-взаимодействия. В рамках "у-теории" комптонизации реликтового излучения мы видим, что этот параметр, характеризующий степень "неравновесности" электронов по отношению к излучению, зависит не только от температуры $T_{\rm e}$, но и от оптической толщи плазмы по томпсоновскому рассеянию т. В свою очередь скорость изменения оптической толщи во времени $\dot{\tau} = \sigma_T n_e c$ определяется двумя важнейшими факторами: расширением Вселенной и динамикой изменения концентрации электронов. Обычно для описания этого процесса используют понятие степени ионизации плазмы

$$x_{\rm e} = \frac{n_{\rm e}}{n_{\rm tot}},\tag{3.1}$$

где n_{tot} – полная концентрация барионов в плазме. В случае, когда температура плазмы заведомо превышает 10^5 K, электроны должны находиться в свободном (не связанном с протонами) состоянии, поскольку гигантское количество ионизующих квантов немедленно приводит к разрушению атомов водорода. Иными словами, эффективность реакции $H + \gamma \rightarrow p + e$ настолько высока, что не приходится говорить о сколько-нибудь заметном содержании нейтрального водорода в космологической материи. В этом случае степень ионизации x_c с высокой точностью равна 1 и изменение оптической толщи плазмы по томпсоновскому рассеянию обусловлено только расширением

Вселенной. Примечательно, что даже в случае, когда степень ионизации плазмы не изменяется во времени ($x_e = 1 = \text{const}$), ожидаемая толща плазмы всё равно будет убывать только за счёт космологического расширения [Hu, 1995],

$$\tau = \int_{t}^{t_{\text{now}}} \sigma_{T} n_{b} c dt \simeq 4,1 \quad 10^{-2} \frac{\Omega_{b}}{\Omega_{m}} h \left\{ \left[\Omega_{\Lambda} + \Omega_{m} \left(1 + z \right)^{3} \right]^{1/2} - 1 \right\}. \quad (3.2)$$

Здесь мы используем те же обозначения, что и в предыдущих главах и $\Omega_{\Lambda} + \Omega_m = 1$. Как видно из уравнения (3.2), уже при $z > z_{\rm cr}$, где $z_{\rm cr}$ определяется из условия $\Omega_{\Lambda} + \Omega_m (1+z_{\rm cr})^3 \gg 1$, поведение оптической толщи подчиняется закону $\tau \propto (1+z)^{3/2}$, а при $z \to 0$ $\tau(z) \propto \frac{3}{2} \Omega_m \quad z \to 0$.

Фактически первый важный вывод, вытекающий из анализа экстремальной асимптоты $x_e = 1$ для любых красных смещений, заключается в том, что сегодняшняя Вселенная с точностью до $\leq 1\%$ должна быть оптически тонкой по томпсоновскому рассеянию. Как видно из уравнения (3.2), при $z \gg 1$ поведение оптической толщи не зависит от Ω_{Λ} ,

$$\tau(z) \approx 4.1 \cdot 10^{-2} \ \Omega_b \Omega_m^{-1/2} h (1+z)^{3/2},$$
 (3.3)

и формально зона "последнего рассеяния" квантов на электронах $(\tau(z) = 1)$ соответствует красному смещению

$$z_* \simeq 8.4 \,\Omega_b^{-2/3} \Omega_m^{1/3} h^{-2/3} \tag{3.4}$$

Принимая для определённости $\Omega_b h^2 \simeq 0.02$, $\Omega_m \simeq 0.3$ и $h \simeq 0.7$ (см. гл. 1) окончательно получим $z \simeq 60$. Таким образом, при полной ионизации космической плазмы максимальное красное смещение, после которого реликтовое излучение распространяется свободно, описывается сравнительно небольшим $z \simeq 60$. Однако возникает вопрос, а может ли полная ионизация водорода самопроизвольно поддерживаться до таких красных смещений? Ответ на этот вопрос можно дать из следующих качественных соображений.

Для поддержания степени ионизации на уровне $x_e = 1$ необходимо, чтобы доля квантов с энергией выше потенциала ионизации водорода $I \approx 13.6$ эВ примерно соответствовала одному кванту на барион. Как и в космологическом нуклео-

синтезе (см. гл. 1) формально это приводит к оценке

$$\xi^{-1} \exp\left(-\frac{I}{kT(z)}\right) \sim 1,\tag{3.5}$$

где $\xi = \xi_{10} \times 10^{10}$. По данным о распространённости космических He^4 и D мы можем оценить оптимальный диапазон для ξ : $\xi_{10} \sim 5$. Подставив эту оценку в уравнение (3.5), получаем

$$T(z) \sim T_i \ln^{-1}(\xi^{-1}) \approx 3.8 \quad 10^3 \text{ K},$$
 (3.6)

где $T_i = I/k \approx 1,5$ 105 К — температура, соответствующая энергии ионизации. С учётом того, что $T(z) = T_0 (1+z)$, где $T_0 = 2,736$ — современная температура реликтового излучения, из уравнения (3.6) следует, что степень ионизации на уровне $x_e \approx 1$ не может быть обеспечена ионизующей виновской частью спектра при красных смещениях z < 1400. Следовательно, для поддержания режима $x_e = 1$ при z < 1400 необходимо присутствие мощной ионизационной компоненты материи, поскольку квантов реликтового излучения оказывается недостаточно!

Из приведённых выше оценок с очевидностью следует вывод о том, что ионизационная история космической плазмы является важнейшим зондом исследования свойств космической материи в эпоху с красным смещением z ≤ 1400. Любая информация о степени ионизации плазмы в этот период неизбежно связана с тестированием процессов выделения энергии, а следовательно, и с идентификацией возможных источников такого энерговыделения. Драматизм ситуации ещё более усиливается, если принять во внимание наблюдения линии водорода с $\lambda = 21$ см и Ly-α-поглощение в спектрах удаленных квазаров, которые показывают, что уже при красных смещениях ~5÷6 космологический водород должен быть ионизован вплоть до $x_e \approx 1$ (см. раздел 3.8). Тем самым идея о неравновесных источниках энерговыделения получает прямое подтверждение, однако, к сожалению, лишь для малых красных смещений. А как обстоит дело с диапазоном 60 < z < 1400? Что можно сказать о наличии или отсутствии источников неравновесной (по отношению к реликтовому излучению) ионизации? По-видимому первыми, кто попытался обосновать неизбежность существования периода нейтрального водорода во Вселенной по крайней мере в ограниченном интервале красных смещений г, были Зельдович и Сюняев [Zeldovich, Sunyaev, 1969]. Ключевым моментом их работы была идея о том, что ионизация водорода должна со-

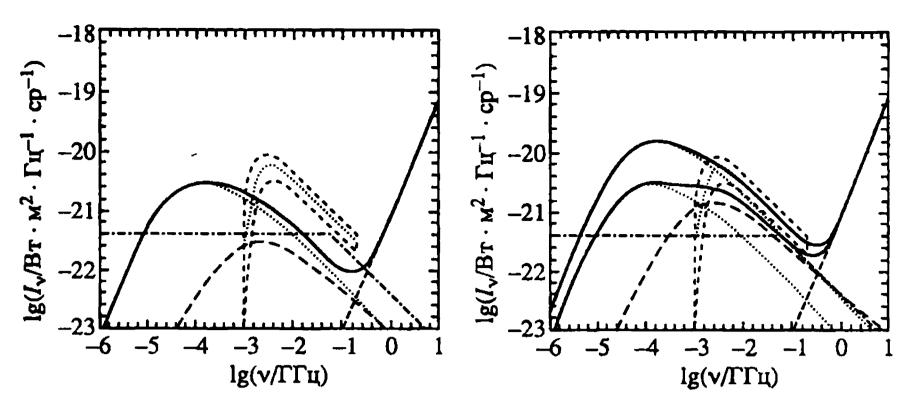


Рис. 3.1. Вклад нормальных галактик (пунктирная линия), радиогалактик (штриховая линия) и реликтового излучения (линия с короткими штрихами) в интенсивность внегалактического радиофона. Вверху — без эволюции источников, внизу — с учётом возможной эволюции. Точками показана область изменений (см. рис. 1.3); детали см. в работе [Protheroe, Biermann, 1996]

провождаться нагревом электронов до температур $T_{\rm c} \ge 10^4$. При таких температурах плазма должна излучать кванты (свободносвободное излучение) с коэффициентом эмиссии

$$E_{ff}(v) = 5,4 \cdot 10^{-39} g T_e^{1/2} e^{-\frac{hv}{kT_e}} n_e^2 \text{ эрг/(см}^3 \cdot \text{с} \cdot \text{ср} \cdot \Gamma \text{ц}),$$
 (3.7)

где g – фактор Гаунта: g=1 при $hv\gg kT_{\rm e}$ и $g=\frac{\sqrt{3}}{\pi}$ imes

$$imes \ln \left[rac{4kT_e}{h\mu} - 0,577
ight]$$
 [Karzas, Latter, 1961] в пределе $h \nu \ll kT_e$. Как

видно из уравнения (3.7), в длинноволновом участке спектра спектр эмиссии практически не зависит от частоты. Следовательно, на данных волнах следует ожидать появления пекулярностей в современном спектре фонового радиоизлучения, обусловленного нагревом космической плазмы при больших красных смещениях.

В гл. 1 при описании спектра космического электромагнитного излучения во Вселенной было отмечено, что в радиодиапазоне ($v \approx 1 \div 10 \ \Gamma \Gamma \chi$) поток излучения заведомо ниже $J_R \approx 10^{-23} \ \text{эрг/(c} \cdot \text{ср}^2 \ \Gamma \chi$) при $v \sim 10 \ \Gamma \Gamma \chi$ (см. рис. 3.1). Заметим, что в оригинальной работе [Zeldovich, Sunyaev, 1969] для J_R принималась величина, почти на 4 порядка выше указанного предела, хотя и на другой частоте ($v \approx 0.6 \ \Gamma \Gamma \chi$, $\lambda \approx 50 \ \text{см}$). В силу "плоского" характера спектра свободно-свободной эмиссии ясно,

что порядок величины E_{ff} ($\nu \approx 0.6$ ГГц) и E_{ff} ($\nu \approx 10$ ГГц) не изменится. В то же время наблюдаемый поток на частоте 600 МГц убывает по сравнению с $\nu \approx 10$ ГГц ещё примерно на порядок (см. рис. 3.1), достигая локального минимума. Таким образом, ограничения на температуру нагрева электронов можно получить из условия [Zeldovich, Sunyaev, 1969]

$$\int \frac{E_{ff}dl}{(1+z)^3} < J_R(v), \tag{3.8}$$

где $dl = cdt \approx (c/H_0) (\Omega_m)^{-1/2} z^{-5/2}$, $z \gg 1$. Тогда, комбинируя уравнения (3.7) и (3.8), окончательно получим

$$\frac{\left(\Omega_b h^2 / 0, 02\right)^2}{\left(\Omega_m h^2\right)^{1/2}} \int_0^{Z_{\text{max}}} dz \sqrt{1+z} \ T_e^{-1/2}(z) \le 0, 5j_R, \tag{3.9}$$

где $j_R \equiv J_R f(v)/10^{-24}$ эрг/(с · см² Γ ц · ср). Как видно из уравнения (3.9), ограничения на $T_e(z)$ зависят от динамики изменения температуры электронов по мере убывания красного смещения.

Рассмотрим модель, когда температура электронов зависит

от z степенным образом,
$$T_{\rm e}(z) \simeq 10^4 \frac{(1+z)^\xi}{(1+z_*)^\xi}$$
, где параметр $\xi \le 0$,

а z_* – момент разогрева. Ясно, что при $\xi > 0$ по мере изменения z температура электронов будет понижаться и, следовательно, мощность ионизатора оказывается недостаточной для поддержания режима $x_e = 1$.

Рассмотрим предельный случай, когда $T_e = \text{const} \approx 10^4 \text{ K}$ и не зависит от z ($\xi = 0$). Тогда из уравнения (3.9) мы немедленно получаем

$$z_{\text{max}}^{3/2} \le 75 j_R \left(\Omega_m h^2\right)^{1/2} \left(\frac{\Omega_b h^2}{0.02}\right)^{-2} \left(\frac{T_e}{10^4}\right)^{1/2}$$
 (3.10)

В то же время электроны, нагретые до 10⁴ K, должны передавать энергию квантам реликтового излучения комптоновским механизмом. Соответствующая величина параметра у при этом оценивается как

$$y \sim \tau \frac{kT_e}{m_e c^2} \approx 1.6 \cdot 10^{-9} \left(\frac{\Omega_b h^2}{0.02}\right) \left(\Omega_m h^2\right)^{-1/2} \left(\frac{T_e}{10^4}\right) z_{\text{max}}^{3/2}.$$
 (3.11)

С учётом уравнений (3.10) и (3.11) получаем

$$y \le 1, 2 \cdot 10^{-7} \left(\frac{\Omega_b h^2}{0,02}\right)^{-1} \left(\frac{T_e}{10^4}\right)^{3/2} j_R.$$
 (3.12)

что заведомо ниже наблюдательного предела СОВЕ при $T_{\rm e} < 6.5 \cdot 10^6$ К. Возвращаясь к уравнению (3.10) и используя в качестве максимума температуры $T_{\rm e} < 6.5 \cdot 10^6$ К, мы получим $z_{\rm max} \le 150$. Заметим, что в монографии [Zeldovich, Novikov, 1983] приведён более детальный вывод нахождения величины $z_{\rm max}$, основанный на поиске современного минимума функционала, учитывающего ограничения по радиофону и y-параметру, не требующие предположения о том, что $T_{\rm e}(z) = {\rm const.}$ В рамках этой обобщённой постановки легко показать, что количественные выводы о необходимости существования периода нейтрального водорода во Вселенной изменяются слабо. С запасом можно утверждать, что вплоть до красных смещений $z \simeq 300$ космическая плазма должна быть нейтральна ($x_{\rm e} < 1$) и её температура должна быть низка ($T_{\rm e} < 10^4$ К).

Таким образом, космологический водород неизбежно должен рекомбинировать, а если принять во внимание эффект Ганна—Патерсона, впоследствии вновь ионизоваться. Каковы могли быть источники этого процессы — вот вопрос, который создаёт интригу ионизационной истории Вселенной, обсуждению которой посвящаются следующие параграфы этой главы.

3.2. Стандартная модель рекомбинации водорода

Объектом нашего внимания в этом параграфе будет стандартная модель рекомбинации водорода, основы которой были сформулированы в конце 60-х — начале 70-х годов XX века в пионерских работах [Зельдович, Курт, Сюняев, 1968; Peebles, 1968]. Необходимо отметить, что в этот период роль скрытой массы в кинематике и динамике эволюции Вселенной недооценивалась. Поэтому все результаты теории рекомбинации водорода в барионной Вселенной нуждались в определённой корректировке, учитывающей простой факт, что скрытая масса по плотности преобладает над плотностью барионной материи и, следовательно, начиная с красного смещения $z_{\rm eq} \simeq 1.2 \ 10^4 \ \Omega_m h^2$, когда её плотность сравнивается с плотностью реликтового излучения, темп расширения Вселенной подчиняется закону $a \propto t^{2/3}$. В то же