## 3.11. Кинетика рекомбинации при наличии источников ионизации

В этом разделе мы рассмотрим возможное искажение кинетики космологической рекомбинации водорода при наличии источников неравновесных Ly-α-квантов, возникающих в ходе распада гипотетических массивных частиц или испарения первичных чёрных дыр. В принципе, эффекты искажений ионизационного баланса существенно зависят от динамики "ионизатора", его плотности энергии, энергетического спектра распада, кинетики его трансформации от максимальной энергии Е<sub>тах</sub> до энергий квантов ~І и целого ряда других особенностей источников ионизации. Однако, следуя [Peebles, Seager, Hu, 2000] (далее [PSH, 2000]), можно предложить достаточно общее феноменологическое описание "неравновесной" рекомбинации водорода, формализовав влияние различных механизмов подкачки ионизующих квантов следующим образом. По аналогии с [PSH, 2000] введём скорость подкачки в плазму избыточных ионизующих квантов

$$\frac{dn_i}{dt} = \chi(t)n_{\rm H}H(t), \qquad (3.84)$$

где  $n_{\rm H}$  – концентрация нейтральных атомов водорода, H(t) =  $= \dot{a}/a$  – параметр Хаббла,  $\chi_{\alpha}(t, E)$  – эффективность переработки спектра инжектируемых высокоэнергичных частиц в ионизующее излучение. Заметим, что в отличие от [PSH, 2000], мы будем считать  $\chi_{\alpha}(E, t)$  функцией времени, тогда как в модели, рассмотренной в [PSH, 2000],  $\chi_{\alpha}(t)$  является константой. При общем анализе кинетики рекомбинации водорода в присутствии ионизатора (уравнение (3.84)) можно указать два характерных временных интервала, принципиально отличающихся по роли Ly-α-квантов в формировании ионизационного баланса (см. раз-

дел 3.3). Первый из них приходится на красные смещения z < 1400, когда Ly-α-кванты реликтового излучения играют определяющую роль в формировании зависимости χ<sub>e</sub>(z), и второй – на  $z \leq 800$ , когда роль Ly- $\alpha$ -квантов становится несущественной и рекомбинационные процессы доминируют над ионизационными в отсутствии дополнительных источников ионизации. Следует подчеркнуть, что столь важная роль Ly-α-квантов в стандартной модели рекомбинации водорода целиком обусловлена планковским характером спектра реликтового излучения и, в частности,

его виновским участком, где квантов с энергией  $E \sim I$  оказывается значительно меньше, чем квантов с  $E \sim \frac{3}{4}I = hv_{Ly\alpha}$ . Для неравновесного ионизатора (уравнение (3.84)) это условие, вообще говоря, может как сохраняться, так и нарушаться (см., например, [Doroshkevich, Naselsky, 2002]). Воспользуемся тем обстоятельством, что начальные стадии рекомбинации, когда роль Ly- $\alpha$ -квантов из планковского спектра реликтового излучения существен-

на, ограничены по времени достаточно узким интервалом красных смещений Δz ~ 200 при z ~ 10<sup>3</sup>.

Для качественного анализа ситуации разложим функцию  $\chi(t, E)$  в ряд Тейлора в окрестности момента времени  $t_{rec}$ , соответствующего  $z = 10^3$ :

$$\chi(t,E) = \chi(t_{\rm rec},E) + \frac{\partial \chi(E_{\alpha},t_{\rm rec})}{\partial t} \bigg|_{t_{\rm rec}} (t-t_{\rm rec}).$$
(3.85)

Исходя из уравнения (3.85), введём характерное время изменения  $\chi(t, E_{\alpha})$  как

$$\tau_{\chi} = \frac{\chi(t_r, E_{\alpha})}{\partial \chi / \partial t|_{t_{rec}, E_{\alpha}}}.$$

Если подкачка неравновесных квантов в систему носит квазистационарный характер, не связанный с мгновенным выделением энергии, то  $\tau_{\chi} \sim t_{rec}$  и вторым слагаемым в уравнении (3.85) можно пренебречь. Тогда приближённо  $\chi(t, E) \simeq \chi(E)$ .

Рассмотрим возможные режимы поведения функции  $\chi(E)$  в окрестности энергий  $E_{\alpha} = \frac{3}{4}I = hv_{\alpha}$ . Из самых общих соображений можно промоделировать зависимость  $\chi(E)$  при  $E \simeq E_{\alpha}$  в виде степенной функции

$$\chi(E) = \varepsilon_{\alpha} \left(\frac{E}{E}\right)^{\gamma}, \quad \varepsilon_{\alpha} = \text{const.}$$
 (3.86)

## $(L_{\alpha})$ При $\gamma > 0$ , но не специально большом ( $\gamma \sim 1$ ), отличия в эффективности производства ионизующих квантов с $E \simeq I$ и Ly- $\alpha$ -

## квантов оказывается порядка

$$\frac{\chi(E=I)}{\chi\left(E=\frac{3}{4}I\right)} \simeq \left(\frac{4}{3}\right)^{\gamma} \sim 1.$$

В этом случае избыточные Ly-α-кванты не играют большой ро-



Рис. 3.22. Ионизационные режимы в моделях "затянутой" рекомбинации [Peebles, Seager and Hu, 2000]. Левый рисунок соответствует уравнению (3.87), правый – наличию ионизатора при малых ( $z < 10^3$ ) красных смещениях

ли в кинетике рекомбинации водорода, так как концентрация неравновесных квантов с энергией  $E \simeq I$  сравнима с концентрацией квантов с  $E = \frac{3}{4}I$ . Аналогичный вывод имеет место и в случае, когда показатель спектра  $\gamma < 0$ , но по-прежнему не специально велик. Исключение составляет случай, когда  $\gamma < 0$  и  $|\gamma| \ge 1$ . Тогда  $\chi(E = I) / \chi \left( E = \frac{3}{4}I \right) \sim \left( \frac{3}{4} \right)^{|\gamma|} \ll 1$  и при больших по-

казателях  $\gamma$  роль квантов с  $E = \frac{3}{4}I$  становится преобладающей.

Прежде всего, эти дополнительные кванты аддитивно суммируются с Ly-α-квантами виновской части спектра реликтового излучения и начинают играть существенную роль в ионизационном балансе среды, главным образом выступая в качестве дополнительного источника в уравнении (3.24),

$$\tilde{R} = R + \varepsilon_{\alpha} n_{\rm H} H(t), \qquad (3.87)$$

где выражение для R приведено в уравнении (3.24). С помощью уравнения (3.87) легко учесть перенормировку ионизационного и теплового баланса в рамках программы RECFAST и рассчитать зависимость  $x_e(z, \varepsilon_{\alpha})$  для различных космологических моделей [PSH, 2000]. На рис. 3.22 показаны различные ионизационные кривые в модели "затянутой" рекомбинации при  $\Omega_b h^2 = 0.02$ ,  $\Omega_{tot} = 1$ ,  $\Omega_{dm} = 0.3$ , h = 0.7 и  $\Omega_{\lambda} = 0.7$ . Как видно из этого рисунка, по мере увеличения мощности ионизатора ( $\varepsilon_{\alpha}$ ) происходит "уп-

лощение" кривой  $x_e(\varepsilon_{\alpha}, z)$  в диапазоне 700  $\leq z \leq 1400$ . Рекомбинация водорода становится всё более затянутой, хотя изменение остаточной степени ионизации (при z = 0) оказывается не столь большим по сравнению с перепадом функции  $x_e(z)$  в дватри порядка при  $z \approx 800 \div 10^3$ . Естественно, что малые значения  $\varepsilon_{\alpha} \approx 0,1 \div 1$  приводят к незначительным искажениям ионизационного режима при  $z \approx 10^3$ , наиболее важного для формирования флуктуаций температуры реликтового излучения.

В противоположной асимптотике, когда концентрация квантов с  $E \sim I$  сравнима или превышает их концентрацию при  $E \sim \frac{3}{4}I$ , роль неравновесных Ly- $\alpha$ -квантов уже не столь велика в

формировании ионизационного баланса плазмы. В пределе, когда влиянием избыточных Ly- $\alpha$ -квантов на кинетику рекомбинации можно пренебречь, основным механизмом искажений является ионизация 1S состояния атома водорода. На рис. 3.22 мы приводим результаты расчётов степени ионизации  $x_e(z)$  в такой модели для различных значений мощности ионизатора  $\chi(E) = \varepsilon_i = \text{const}$  [PSH, 2000]. Как видно из этого рисунка, неравновесная ионизация водорода вызывает значительные искажения функции  $x_e(z)$  при  $z < 10^3$  даже при сравнительно небольших значениях параметров  $\varepsilon_i = 10^{-3} \div 10$ .

В заключение этого раздела, следуя [PSH, 2000], оценим величину комптоновских искажений спектра реликтового излучения, возникающих в процессе "подкачки" в плазму неравновесных фотонов с  $E \sim I$  в эпоху с  $z \leq 10^3$ . Поскольку темп подкачки энергии определяется соотношением (3.87) для параметра у, характеризующего уровень искажений спектра реликтового излучения, можно воспользоваться оценкой

$$y \simeq \frac{1}{4} \frac{\varepsilon_I}{\varepsilon} = \frac{\varepsilon_{\alpha} n_{\rm H} I f F}{4(1+z)\sigma T^4} \simeq 10^{-9} \frac{\varepsilon_{\alpha} f F}{(z/10^3)},$$
(3.88)

где  $\varepsilon_I$  – плотность энергии ионизующих квантов,  $\varepsilon_R = \sigma T^4$  – плотность энергии реликтового излучения;  $T_0 = 2,73$  К – современная температура реликтового излучения;  $\sigma$  – постоянная Стефана–Больцмана; f – доля энергии  $\varepsilon_I$ , приходящаяся на искажения спектра реликтового излучения; F – доля энергии источников ионизации, приходящаяся на кванты с  $E \sim I$ . Поскольку наблюдательный предел по у-параметру составляет  $y_{obs} \leq 2$  10<sup>-5</sup>,

$$+ c_2 + (1 + 2) 0 I_0$$
 (2710)

ясно, что при  $z \sim 10^3 \varepsilon_{\alpha} fF \leq 2 \cdot 10^4$ . Как видно из рис. 3.22, даже при экстремально больших значениях параметра  $\varepsilon_{\alpha} \simeq 10^4$  условие на малость у-искажений заведомо выполняется. Таким образом, спектральные искажения оказываются нечувствительными к параметрам ионизатора и основную информацию о его характеристиках можно получить непосредственно из данных о распределении анизотропии реликтового излучения при учёте более мощных по сравнению со стандартной моделью ионизационных режимах.