Глава 8

"ПЛАНКОВСКАЯ ЭРА" В ИЗУЧЕНИИ АНИЗОТРОПИИ И ПОЛЯРИЗАЦИИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ

8.1. Введение

С завершением недавних баллонных экспериментов BOOMERANG, MAXIMA-1, TOP-HAT и наземных экспериментов DASI, CBI и VSA экспериментальные исследования анизотропии и поляризации реликтового излучения вошли в новую фазу. Успешно запущенный в июне 2001 г. спутник МАР открывает новую эру в изучении анизотропии и поляризации реликтового излучения, отличающуюся от предыдущего этапа большей точностью в определении характеристик космологического сигнала, а следовательно, и космологических параметров. Речь идёт о постоянной Хаббла Н₀, плотности барионной фракции материи во Вселенной Ω_b, плотности скрытой массы Ω_{bm}, плотности "тёмной энергии" Ω_γ (вакуум?), показателе спектра адиабатических возмущений п и целом ряде других.

В 2007 г. намечен запуск международного спутника PLANCK, целью которого является измерение анизотропии и поляризации реликтового излучения с беспрецедентной точностью. Общепризнано, что планируемый эксперимент PLANCK подведёт итог более чем 35-летней истории теоретического и экспериментального изучения анизотропии и поляризации реликтового излучения и позволит вплотную приблизиться к созданию реалистической модели Вселенной.

Прежде, чем обсуждать основные особенности, вносимые в физику реликтового излучения экспериментами МАР и PLANCK, кратко суммируем результаты, достигнутые радиоастрономией и космологией в изучении анизотропии реликтового излучения. На рис. 8.1а,б приведена сводка основных результатов наблюдений спектра анизотропии реликтового фона с указанием погрешностей измерений (ссылки и описание экспериментов см. в работе [Wang, Tegmark, Zaldarriaga, 2002]) и сравнение результатов экспериментов BOOMERANG, MAXIMA-1 и

Рис. 8.1а. Зависимость $\delta T(l)$ от номера мультиполя по данным 24-х экспериментов, завершенных в середине 2001 г. [Wang, Tegmark, Zasldarriaga, 2002]

DASI с данными эксперимента CBI. Как видно из этих рисунков, наблюдается вполне удовлетворительное согласие спектров C(l), полученных в рамках отмеченных выше экспериментов. На основании этих данных в работе [Efstathiou et al., 2002] получены параметры CDM-модели, наилучшим образом описывающей имеющуюся совокупность наблюдательных данных (см. рис. 8.2). Согласно работе [Efstathiou et al., 2002], наилучшее согласие между предсказаниями теории и экспериментальными данными достигается в стандартной CDM-модели с адиабатическими возмущениями и следующим набором параметров: $\Omega_b h^2 \approx 0,021$; $\Omega_{dm} h^2 = 0,12$; $\Omega_{\Lambda} = 0,7$; $\Omega_k = 1 - \Omega_{\Lambda} - \Omega_b - \Omega_{dm} = 0$ (параметр кривизны); $n_s = 1$ (спектр Харрисона-Зельдовича). Какие основные выводы для космологии могут быть получены из приведённого анализа наблюдательных данных?

Рис. 8.16. Особенности спектра анизотропии по данным CBI [Mason et al., 2002]. Крестами отмечены данные для различных методов построения карт, заштрихованные области иллюстрируют результаты BOOMERANG, MAIXIMA и DASI

Рис. 8.2. Спектр анизотропии для CDM модели с набором параметров $\omega_b = 0,022, \omega_c = 0,12, \Omega_k = 0, \omega_{\Lambda} = 0,7$ [Efstathiou et al., 2002]. Сплошная линия соответствует наиболее подходящей CDM-модели

Во-первых можно определённо утверждать, что мелкомасштабная анизотропия (на углах $\theta < 1^{\circ}$) обнаружена в полном соответствии с предсказаниями теории. Как на рис. 8.1а,б, так и на рис. 8.2 отчетливо виден первый сахаровский пик ($l \sim 200$) и намечено хорошее согласие предсказаний теории и результатов экспериментов в районе второго и, возможно, третьего пиков. Такое совпадение формы теоретической кривой и экспериментальных данных свидетельствует о том, что наши представления о динамике процессов, происходивших в догалактической плазме в эпоху красных смещений $z \leq 10^3$ с очевидностью верны.

Однако менее очевидным представляется ответ на вопрос: а какая именно космологическая модель является наилучшей? Но очевидность ответа заключается прежде всего в том, что, собственно, мы будем принимать за критерий "хорошей" или "плохой" модели. Интуитивно кажется, что чем меньше отклонение теоретического спектра анизотропии C'_{I} от экспериментального С_l^{ехр}, тем выбранная теоретическая модель лучше других, не обеспечивающих этого минимума. Однако современные и будущие эксперименты не могут измерить спектр C_l^{exp} без погрешностей ΔC_l . Следовательно, возникают две важнейшие задачи: минимизация погрешностей эксперимента (повышение точности предсказаний C'_l и уменьшение ΔC_l) и одновременное изучение природы погрешностей ΔC_l (систематика + случайный разброс значений). В качестве иллюстрации важнейшей роли систематических и случайных погрешностей обратим внимание читателя на рис. 8.2. Как видно из этого рисунка, весь диапазон крупномасштабной анизотропии, измеренной СОВЕ (l < 30) оказывается вне оптимальной кривой, главным образом аппроксимирующей данные экспериментов BOOMRRANG, MAXIMA-1, DASI и CBI, о которых шла речь в предыдущих главах. Это означает, что массив наблюдательных данных, принятых к обра-

ботке, содержит систематические погрешности различных экспериментов, которые могут влиять на величину основных космологических параметров. Следуя общепринятой терминологии для наиболее важных космологических параметров, ниже мы будем использовать следующие обозначения:

а) $\omega_b = \Omega_b h^2$ – плотность барионной фракции материи в долях критической плотности ρ_{cr} ,

б)
$$\omega_c = \Omega_{dm} h^2$$
 – плотность CDM-фракции в долях ρ_{cr} ,

8.1. Введение

в) Q_{10} – амплитуда адиабатической моды, нормализованная на $C_{10}^{1/2}$ при l = 10, относительно СОВЕ-данных,

г) n_s и n_i – показатели спектра адиабатических возмущений и гравитационных волн соответственно,

д) $r_2 = C_2^l / C_2^s$ – отношение спектров гравитационных волн и адиабатических возмущений при l = 2,

e) $\Omega_k = 1 - \Omega_b - \Omega_c - \Omega_{\Lambda}$ – параметр кривизны Вселенной.

Предположим, что систематические погрешности эксперимента полностью устранены¹ и погрешности ΔC_l носят статистический характер.

Зададимся вопросом: какой из будущих экспериментов, МАР или PLANCK, при выбранной модели случайных ΔC_l сможет точнее определить космологические параметры, наилучшим образом соответствующие наблюдательным данным? Для этого, следуя работе [Bond, Efstathiou, Tegmark, 1997], рассмотрим две космологические модели, близкие друг другу по величине приведенных выше параметров. Первая из них такова: $\Omega_k = 0$, $\Omega_{\Lambda} = 0$, $\omega_b = 0,0125, \ \omega_{dm} = 0,2375, \ n_s = 1, \ n_t = 0$ и $r_2 = 0,2$. На рис. 8.3 для этой модели С₁ показано сплошной линией. Вторая модель отличается лишь 20%-ным увеличением барионной плотности и 5%-ным уменьшением плотности CDM-фракции (пунктирная линия на рис. 8.3). Сразу отметим, что обе эти модели неразличимы на основании имеющихся наблюдательных данных (см. рис. 8.1а,б) в пределах погрешностей измерений (68% – доверительный интервал). В рамках проекта МАР эти модели "различимы" на пороге чувствительности, а если принять во внимание роль систематических эффектов, практически неразличимы так же, как и в балонных экспериментах. Однако, как видно из рис. 8.3, для PLANCK эти две модели различаются существенно, начиная с мультиполей $l \simeq 400$. Этот вывод остаётся в силе даже при учёте 5 ÷ 10%-го уровня систематических погрешностей, который в действительности должен быть ниже почти в 5 раз.

Иными словами, планируемый эксперимент PLANCK в полном смысле слова открывает новую страницу как в теоретическом, так и в экспериментальном изучении анизотропии и по-

¹ Естественно, это предположение далеко от реальности. По-видимому, роль "систематики" будет определяющей в оценке уровня шумов как для МАР, так и для PLANCK экспериментов. В то же время такое упрощение позволяет сравнивать погрешности различных экспериментов в определении C₁ по крайней мере в академическом плане.

Рис. 8.3. Иллюстрация потенциальных возможностей экспериментов PLANCK и МАР

ляризации реликтового излучения, ставя новые задачи перед исследователями, лежащие за порогом чувствительности в несколько процентов. Очертим кратко горизонты этого поиска. Будем предполагать, как и раньше, что уровень систематических помех не превышает уровень случайных погрешностей. Тогда неопределённости в значениях основных космологических параметров выглядят следующим образом (табл. 8.1). В этой таблице колонка $r_2 = 0$ соответствует ситуации, когда гравитационные волны отсутствуют, колонка $r_2 = -7n_i$ – рассмотренной в гл. 5 инфляционной модели, базирующейся на приближении медленного изменения поля, а колонка "по const." – возможностям эксперимента измерять космологические параметры без каких-либо дополнительных предположений о характеристиках гравитационных волн. Потенциальные возможности эксперимента PLANCK даже с оговоркой о важности учёта систематических погреш-

Пара- метр	MAP			PLANCK		
	no const.	$r_2 = -7n_t$	$r_2 = 0$	no const.	$r_2 = -7n_1$	$r_2 = 0$
$\delta ω_b / ω_b$	0,052	0,028	0,030	0,0064	0,0056	0,0056
δω _c /ω _c	0,097	0,028	0,031	0,0042	0,0042	0,0039
δQ	0,0066	0,0047	0,0050	0,0013	0,0010	0,0011
δr	0,49	0,043	_	0,33	0,023	
δn_S	0,030	0,0061	0,0098	0,0049	0,0032	0,0042
δn_t	0,56	0,0061	-	0,40	0,0032	
δh/h	0,082	0,020	0,028	0,0045	0,0045	0,0041
δΩΛ	0,16	0,049	0,068	0,012	0,012	0,011

Таблица 8.1

ностей впечатляют на фоне возможностей МАР, не говоря уже о баллонных экспериментах.

Напрашивается вопрос: чем обусловлена такая высокая чувствительность планируемого эксперимента PLANCK и какими методами она будет достигнута? Для ответа на него приведём формальное описание проекта, детали которого можно найти на web-странице PLANCK². Прежде всего, уникальные возможности PLANCK базируются на двух инструментах, LFI и HFI, имеющих соответственно 56 детекторов в диапазоне 30÷100 ГГц и 56 детекторов в диапазоне 100-857 ГГц. Выбор 10 частотных каналов обусловлен необходимостью мультичастотной фильтрации галактических и внегалактических помех. В табл. 8.2 приведены дисперсия анизотропии реликтового излучения, дисперсия пиксельного шума σ_{noise} , размер пикселей и полуширина диаграммы направленности антенны для всех частотных каналов PLANCK [Vielva et al., 2001]. Три НFI канала – 143, 217 и 545 ГГц будут осуществлять измерение поляризации реликтового излучения. Ожидается, что для первых двух диапазонов уровень галактических и внегалактических помех должен быть минимальным по сравнению с другими диапазонами (см. следующий раздел). Запуск спутника PLANCK планируется на февраль 2007 г. с выводом на орбиту вокруг второй точки Лагранжа L2. Начало наблюдений радионеба – июль 2007 г. Предварительный вариант стратегии сканирования неба схематически показан на рис. 8.4. Общее вращение спутника осуществляется в плоскости эклипти-

² http://astro.estee.esa.n1/PLANCK.

Рис. 8.4. Стратегия сканирования радионеба в эксперименте PLANCK. Угол между осью вращения и оптической осью составляет 85°

Таблица 8.2

Частота, ГГц	σ _{CMB} , 10 ⁻⁵	σ _{noise} , 10 ⁻⁵	FWHM, мин. дуги	Размер пиксе- лей, мин. дуги
857	4,47	2221,11	5,0	1,5
545	4,47	48,951	5,0	1,5
353	4,48	4,795	5,0	1,5
217	4,43	1,578	5,5	1,5
143	4,27	1,066	8,0	1,5
100(HFI)	4,07	0,607	10,7	3,0
100(LFI)	4,10	1,432	10,0	3,0
70	3,88	1,681	14,0	3,0
44	3,43	0,679	23,0	6,0
30	3,03	0,880	33,0	6,0

ки с сохранением ориентации Солнце-Земля-спутник. Ось вра-

щения спутника остаётся неизменной в выбранной системе координат в течение часа и за это время оптическая ось (Главный пучок на рис. 8.4) совершает 60 или 120 оборотов (при фиксированной ориентации оси вращения)³. Затем ориентация оси вращения изменяется на 2,5' и так – каждый час. В силу смещения положения спутника по отношению к L2 и его вращения

³ В различных вариантах стратегии сканирования обсуждаются именно эти две возможности.

имеет место медленный выход орбиты из плоской эклиптики на угол $\leq 10^{\circ}$. Планируется, что в течение первого года наблюдений будет покрыто всё радионебо. Особое отличие проекта PLANCK от уже реализованных проектов по измерению анизотропии и поляризации реликтового излучения заключается в детальнейшем анализе, моделировании и разработке методов устранения эффектов систематики, включающих калибровку профиля антенны, устранении низкочастотных шумов (1/*f* – шум) и др. (см. подробнее web-страницу PLANCK).

В то же время, при всей важности и актуальности проблем устранения систематики наибольший интерес, естественно, представляют новые горизонты физики реликтового излучения, на которых мы хотим остановиться более подробно в следующих разделах.

8.2. Вторичная анизотропия и поляризация реликтового излучения в эпоху реионизации

Этот раздел описывает одну из новых страниц физики реликтового излучения, написанную научным сообществом в последние десятилетия под влиянием впечатляющих достижений экспериментов. Ещё двадцать лет назад гипотеза о более сложном характере ионизационной истории космической плазмы, чем предсказывалось стандартной моделью рекомбинации [Peebles, 1968; Зельдович, Курт и Сюняев, 1969], обсуждалась в литературе применительно к проблеме отсутствия анизотропии реликтового излучения на уровне $\Delta T/T \sim 10^{-2} \div 10^{-3}$. В начале 80-х годов прошлого века вряд ли кто-нибудь всерьёз ожидал, что развитие оптической и радиоастрономии в буквальном смысле перевернёт наши представления о строении и эволюции Вселенной и откроет не только теоретические, но, что наиболее важно, и экспериментальные возможности изучения процесса зарождения структур во Вселенной. Тем не менее сейчас, после открытия объектов с красными смещениями z ≥ 6, после открытия крупно- и мелкомасштабной анизотропии реликтового излучения на повестке дня стоит анализ новых возможностей теории строения и эволюции Вселенной, в создании которой значительная роль отводится физике реликтового излучения. Грандиозность задачи диктует требования, предъявляемые к теории и эксперименту, стимулируя их развитие. Применительно к физике релик-