Каталог сайтов Arahus.com
назад содержание далее

Часть II. ДИЛЕММА ПРОСТРАНСТВА, ВРЕМЕНИ И КВАНТОВ

Интуиция и ее изъяны
Принцип относительности
Скорость света
Истина и ее последствия
Влияние на время. Часть I
Влияние на время. Часть II
Жизнь на бегу
И все же: кто движется?
Влияние движения на пространство
Движение в пространстве-времени
Как насчет Е = mс2?

Глава 2. Пространство, время и взгляд наблюдателя

В июне 1905 г. двадцатишестилетний Альберт Эйнштейн послал в немецкий журнал Annalen der Physik статью, в которой бросил вызов парадоксу о скорости света, который привлек его внимание десять лет назад, когда он был еще подростком. Перевернув последнюю страницу рукописи Эйнштейна, редактор журнала, Макс Планк, понял, что общепринятые научные представления низвергнуты. Без шума и фанфар скромный чиновник патентного бюро из швейцарского города Берна радикально изменил традиционные представления о пространстве и времени, заменив их новыми понятиями, бросившими вызов всему, к чему мы привыкли на основе нашего жизненного опыта.
   Парадокс, который беспокоил Эйнштейна в течение десяти лет, состоял в следующем. В середине XIX в., после тщательного изучения результатов экспериментальных работ английского физика Майкла Фарадея, шотландский физик Джеймс Клерк Максвелл сумел объединить понятия электричества и магнетизма в единую теорию электромагнитного поля. Если вам когда-либо приходилось находиться на вершине горы перед началом сильной грозы или стоять рядом с генератором Ван де Граафа, вы почувствовали, что такое электромагнитное поле, потому что вы его ощутили физически. Для тех, кто не имеет такого опыта, скажем, что поле похоже на поток электрических и магнитных силовых линий, пронизывающих область пространства. Например, если рассыпать железные опилки возле магнита, то можно увидеть, что они образуют упорядоченный рисунок, следующий невидимым силовым линиям магнитного поля. Сняв шерстяной свитер в особенно сухой день, вы слышите потрескивание, сопровождающееся одним-двумя короткими разрядами, что свидетельствует о существовании силовых линий электрического поля, порождаемых стекающими с волокон вашего свитера электрическими зарядами. Помимо объединения этих и всех других электрических и магнитных явлений в рамках единого математического описания, теория Максвелла довольно неожиданно привела к выводу, что электромагнитные возмущения распространяются с постоянной, никогда не изменяющейся скоростью, равной скорости света. На основании этого факта Максвелл заключил, что видимый свет представляет собой не что иное, как определенный тип электромагнитной волны. Как нам сегодня известно, взаимодействуя с химическими со-единениями в сетчатке глаза, эта волна дает человеку зрение. Более того (и это ключевой момент), теория Максвелла также показала, что все электромагнитные волны, в том числе и видимый свет, являются своего рода вечными странниками. Они никогда не останавливаются. Они никогда не замедляют своего движения. Свет всегда движется со скоростью света.
   Все это хорошо и замечательно до тех пор, пока мы, вслед за шестнадцатилетним Эйнштейном, не зададимся вопросом: что произойдет, если пуститься в погоню за светом, двигаясь при этом со скоростью света? Интуиция, основанная на законах движения Ньютона, подсказывает, что мы догоним световые волны, и они будут казаться нам неподвижными, свет как бы остановится. Но согласно теории Максвелла и не вызывающим сомнений экспериментальным данным, такого явления, как неподвижный свет, попросту не существует – никому и никогда не удавалось держать на своей ладони неподвижный луч света. Отсюда и возникает парадокс. К счастью, Эйнштейн не знал о том, что многие ведущие физики мира сражались с этой задачей (часто следуя пути, ведущему в тупик), и обдумывал парадокс Максвелла и Ньютона без помех в уединении со своими собственными мыслями.
   В этой главе мы расскажем, как Эйнштейн разрешил это противоречие в своей специальной теории относительности, навсегда изменив наши представления о пространстве и времени. Может показаться странным, что ключевым моментом в специальной теории относительности является точное понимание того, как выглядит мир для людей, часто называемых «наблюдателями», которые движутся по отношению друг к другу. На первый взгляд это может показаться просто схоластическим упражнением. Но оказалось, что это вовсе не так: благодаря Эйнштейну путешествие с воображаемыми наблюдателями, двигающимися за световым лучом, приводит к глубоким выводам, позволяющим понять, как необычно могут выглядеть самые заурядные ситуации для людей, находящихся в относительном движении.

Интуиция и ее изъяны

в начало 

в начало 

Повседневный опыт может подсказать несколько примеров, в которых восприятие ситуации такими наблюдателями различно. Например, деревья, растущие вдоль шоссе, будут выглядеть движущимися для водителя едущего автомобиля и неподвижными для путника, присевшего на обочине. Аналогично, приборная панель автомобиля не кажется движущейся для водителя (по крайней мере, мы надеемся на это), но, как и все другие части автомобиля, движется с точки зрения путника. Это настолько фундаментальные и интуитивно ощущаемые свойства окружающего нас мира, что мы редко обращаем на них внимание.
   Специальная теория относительности утверждает, однако, что различия в картине, видимой двумя такими наблюдателями, являются более тонкими и глубокими. В ней высказывается странное утверждение, что наблюдатели, находящиеся в относительном движении, будут по-разному воспринимать расстояние и время. Это означает, как мы увидим ниже, что одинаковые наручные часы у двух наблюдателей, перемещающихся друг относительно друга, будут идти с разной скоростью и покажут разную длительность промежутка времени между двумя выбранными событиями. Специальная теория относительности показывает, что это утверждение не связано с точностью часов, а представляет собой неотъемлемое свойство самого времени.
   Аналогично, если движущиеся по отношению друг к другу наблюдатели будут проводить измерения расстояния с помощью совершенно одинаковых рулеток, они получат разные значения длины. И снова дело здесь не в погрешностях средств измерения и не в ошибках при их использовании. Самые точные в мире измерительные устройства подтвердят, что пространство и время, измеряемые как расстояния и промежутки времени, воспринимаются разными наблюдателями по-разному. Специальная теория относительности в окончательной формулировке Эйнштейна разрешает противоречие между нашими интуитивными представлениями о движении и свойствами света. Од-нако это решение имеет свою цену – движущиеся относительно друг друг наблюдатели будут по-разному воспринимать пространство и время.
   С тех пор, как Эйнштейн сообщил миру о своем поразительном открытии, прошло почти сто лет, однако до сих пор большинство из нас воспринимает пространство и время как абсолютные понятия. Мы не имеем интуитивного знания понятий специальной теории относительности, мы не чувствуем ее. Следствия специальной теории относительности не являются частью нашей интуиции. Причина этого весьма проста: эффекты, обусловленные специальной теорией относительности, зависят от скорости движения. При скоростях, с которыми движутся автомобили, самолеты и даже космические челноки, эти эффекты необычайно малы. Различия в восприятии пространства и времени между неподвижными наблюдателями и наблюдателями, едущими в машинах или летящими в самолетах, безусловно, существуют, но они столь малы, что остаются незамеченными. Однако если бы мы путешествовали в космическом корабле будущего, скорость которого составляет значительную часть скорости света, то эффекты, предсказываемые теорией относительности, были бы совершенно очевидны. Но, конечно, такая возможность пока еще остается в области фантастики. Тем не менее, как мы увидим в последующих разделах, правильно поставленные эксперименты позволяют ясно и точно наблюдать релятивистские свойства пространства и времени, предсказываемые теорией Эйнштейна.
   Для того чтобы получить представление о величине рассматриваемых эффектов, представим, что на дворе 1970 г., и в моде большие и быстрые автомобили. Слим, только что потративший все свои сбережения на приобретение нового «Понтиака», отправился вместе со своим братом Джимом на местный гоночный трек, чтобы устроить своей новой машине такой тест-драйв, который ему не позволил продавец. Разогрев машину, Слим устремился по гоночной полосе длиной в один километр со скоростью 200 км/ч, а Джим остался стоять на обочине, засекая время. Желая получить независимое подтверждение, Слим тоже пользуется секундомером, чтобы определить время, за которое машина пройдет полосу. До появления работы Эйнштейна никто не усомнился бы в том, что если секундомеры Слима и Джима работают правильно, они покажут одинаковое время. Однако согласно специальной теории относительности, секундомер Джима покажет 18 с, а секундомер Слима – 17,99999999999969 с – на крошечную долю секунды меньше. Конечно, эта разница настолько мала, что она может быть обнаружена только при измерениях, точность которых во много раз превосходит точность ручных секундомеров, которые запускаются и останавливаются нажатием пальца, точность систем хронометража, используемых на олимпийских играх, и даже точность прецизионных атомных часов самой современной конструкции. Поэтому неудивительно, что наш повседневный опыт не обнаруживает того, что течение времени зависит от того, с какой скоростью мы движемся.
   Похожие различия обнаружатся и при измерении длины. Допустим, что в ходе следующего испытания Джим решил использовать хитрый трюк для измерения длины новой машины Слима: он запускает секундомер, когда мимо него проходит передняя часть автомобиля, и останавливает его, как только рядом с ним оказывается задняя часть машины. Поскольку Джим знает, что автомобиль Слима движется со скоростью 200 км/ч, он может рассчитать его длину, умножив скорость на время, зафиксированное его секундомером. И вновь, до появления теории Эйнштейна, ни у кого не возникли бы сомнения, что длина, которую таким косвенным способом определил Джим, в точности совпадет с длиной, которую тщательно вымерил Слим, когда его машина стояла без движения на полу автомобильного салона. Специальная теория относительности, напротив, утверждает, что если Слим и Джим выполнили измерения точно, и Слим установил, что длина его машины составляет, скажем, ровно 5 м, то измерения Джима дадут цифру 4,999999999999914 м – на крошечную долю метра меньше. Как и в случае измерения времени, это различие настолькомало, что обычные инструменты не в состоянии обнаружить его.
   Хотя эти различия чрезвычайно малы, они указывают на фатальный изъян в общепринятой концепции универсального и неизменного пространства и времени. По мере того как относительная скорость наблюдателей, таких как Слим и Джим, увеличивается, этот изъян становится все более очевидным. Чтобы различия стали заметными, скорость движения должна составлять существенную долю от максимально возможной скорости – скорости света, которая, согласно теории Максвелла и результатам экспериментальных измерений, составляет примерно 300000 км/с или около 1,08 млрд км/ч. Такой скорости достаточно, чтобы обогнуть земной шар более семи раз в течение одной секунды. Например, если Слим будет двигаться со скоростью не 200 км/ч, а 935 млн км/ч (около 87 % от скорости света), то, как показывают расчеты с использованием математического аппарата специальной теории относительности, длина его машины, измеренная Джимом, составит примерно 2,5 м. Это существенно отличается от результата, полученного Слимом (а также от цифры, приведенной в техническом руководстве к автомобилю). Аналогично, время, за которое автомобиль пройдет гоночную полосу по данным Джима, будет примерно в два раза больше, чем время, измеренное Слимом.
   Поскольку такие огромные скорости находятся далеко за пределами технически достижимых, эффекты «замедления времени» и «лоренцевского сокращения», как они называются в специальной литературе, в нашей повседневной жизни чрезвычайно малы. Если бы мы жили в мире, в котором тела обычно двигаются со скоростями, близкими к скорости света, эти свойства пространства и времени были бы настолько понятны нам интуитивно (поскольку мы сталкивались бы с ними постоянно), что заслуживали бы отдельного упоминания не больше, чем рассмотренное в начале этой главы кажущееся движение деревьев на обочине дороги. Но поскольку мы живем в ином мире, эти особенности нам непривычны. Как будет видно ниже, понимание и принятие их требует, чтобы мы подвергли наш взгляд на мир значительным изменениям.

Принцип относительности

в начало 

в начало 

В основе специальной теории относительности лежат два простых свойства, имеющих, однако, глубокие корни. Одно из них, как уже упоминалось, касается света; мы будем обсуждать его более подробно в следующем разделе. Другое является более абстрактным. Оно связано не с каким-либо конкретным физическим законом, а относится ко всем законам физики. Это принцип относительности, который базируется на простом факте: всегда, когда речь идет об абсолютной величине или о векторе скорости (величине скорости тела и направлении движения тела), следует точно указать, кто или что выполняет измерения. Важность этого утверждения легко понять на примере следующей ситуации. Представим себе, что Джордж, одетый в космический скафандр с прикрепленной к нему красной сигнальной лампочкой, парит в абсолютной темноте абсолютно пустого космического пространства, вдали от всех планет, звезд и галактик. С точки зрения Джорджа, он находится в полной неподвижности, в однородном безмолвном мраке Вселенной. Вдалеке Джордж замечает слабенький мерцающий зеленый огонек, который постепенно приближается к нему. В "конце концов он приближается так близко, что Джордж видит лампочку, прикрепленную к скафандру другого космонавта, Грейс, которая медленно проплывает мимо него. Пролетая мимо, она машет ему рукой, Джордж отвечает тем же, и она медленно удаляется. С той же достоверностью история могла быть рассказана и Грейс. Начало рассказа будет таким же: Грейс в полном одиночестве, в необъятном безмолвном пространстве. Вдали Грейс замечает мерцающий красный огонек, который постепенно приближается к ней. Наконец огонек подходит достаточно близко, чтобы Грейс могла увидеть, что это лампочка, прикрепленная к скафандру другого космонавта, Джорджа. Он медленно проплывает мимо и, поравнявшись с ней, машет ей рукой. Грейс отвечает, и он растворяется во мраке.Эти две истории описывают одну и ту же ситуацию с двух различных, но равноправных точек зрения. Каждый наблюдатель считал себя неподвижным и воспринимал другого как движущегося. Обе эти точки зрения понятны и оправданы. Поскольку между двумя космонавтами существует симметрия, с фундаментальных позиций нет оснований утверждать, что один из них «прав», а другой «неправ». У каждого одинаковые основания считать себя правым.
   Этот пример демонстрирует сущность принципа относительности, которая состоит в том, что понятие движения относительно. Мы можем говорить о движении тела только по отношению к какому-то другому телу. Таким образом, утверждение «Джордж движется со скоростью 10 км/ч» не будет иметь смысла до тех пор, пока мы не укажем тело для сравнения. Утверждение «Джордж движется со скоростью 10 км/ч относительно Грейс» имеет смысл, поскольку теперь мы указали Грейс в качестве точки отсчета. Как показывает наш пример, это последнее утверждение эквивалентно утверждению «Грейс движется со скоростью 10 км/ч относительно Джорджа (в противоположном направлении)». Другими словами, не существует понятия «абсолютного» движения. Движение относительно.
   Ключевым моментом в этой истории является то, что ни Джорджа, ни Грейс не толкали, не тянули, не прилагали к ним сил и не оказывали на них какого-либо другого воздействия, которое могло бы нарушить безмятежное состояние свободного равномерного движения, в котором они пребывали. Таким образом, более точная формулировка говорит, что свободное движение имеет смысл только относительно других объектов. Это важное уточнение, поскольку если действуют силы, они могут изменить скорость наблюдателей – величину скорости и/или направления движения, и эти изменения могут быть зафиксированы. Например, если бы за спиной Джорджа был реактивный ранцевый двигатель, Джордж наверняка бы почувствовал, что он движется. Это чувство является внутренним. Если бы ранцевый двигатель работал, Джордж бы знал, что он движется, даже если бы его глаза были закрыты, и он не мог проводить сравнение с другими объектами. Даже без этих сравнений он не мог бы уже утверждать, что был неподвижен, а «остальной мир двигался мимо него». Движение с постоянной скоростью относительно, а движение с непостоянной скоростью, или, иными словами, с ускорением – нет. (Мы вернемся к этому вопросу в следующей главе, когда будем обсуждать ускорение и общую теорию относительности Эйнштейна.)
   Помещение этих событий во мрак пустого космического пространства облегчает понимание за счет отсутствия таких привычных объектов, как улицы и здания, которым мы обычно, хотя и не совсем оправданно, присваиваем статус «неподвижных». Однако тот же принцип применим и к земным условиям: с ним приходится сталкиваться и в повседневной жизни1. Представим, например, что уснув в поезде, вы проснулись как раз в тот момент, когда мимо по параллельному пути проходит другой поезд. Вид из окна полностью закрыт этим поездом, который не дает вам видеть другие объекты, и в течение какого-то времени вы не будете знать, кто движется – ваш поезд, другой или оба сразу. Конечно, если ваш поезд покачивается или постукивает на стыках рельсов, или если он меняет направление движения на повороте пути, вы почувствуете, что движетесь. Но если движение будет плавным, если скорость поезда будет оставаться постоянной, вы будете наблюдать только относительное движение двух поездов, и не сможете утверждать наверняка, который из них движется.
   Сделаем еще один шаг. Представим, что вы едете в таком поезде, и опустили шторы, так что окна теперь полностью закрыты. При отсутствии возможности видеть что-либо за пределами купе и при абсолютно постоянной скорости движения поезда у вас не будет никакой возможности определить, движетесь вы или нет. Купе вокруг вас выглядит совершенно одинаково независимо от того, стоит ли поезд или мчится с большой скоростью. Эйнштейн формализовал эту идею, которая на самом деле восходит еще к Галилею, провозгласив, что ни вы, и никакой другой путешественник, не сможете провести в закрытом купе эксперимент, который позво-лил бы определить, движется поезд или нет. Здесь опять работает принцип относительности, поскольку любое свободное движение относительно, оно приобретает смысл только при сравнении с другими объектами или наблюдателями, которые также совершают свободное движение. У вас нет возможности определить состояние вашего движения без прямого или косвенного сравнения с каким-либо «внешним» телом. Понятия «абсолютного» равномерного движения попросту не существует, такое движение приобретает физический смысл только при сравнении.
   В действительности Эйнштейн понял, что принцип относительности означает большее: законы физики, каковы бы они ни были, должны быть абсолютно одинаковы для всех наблюдателей, совершающих равномерное движение. Если бы Джордж и Грейс не просто парили в одиночестве в пространстве, а проводили бы одинаковые серии экспериментов на своих космических станциях, результаты, полученные ими, были бы одинаковы. Напомним еще раз, что каждый из них абсолютно убежден, что его или ее станция находится в покое, хотя станции и совершают относительное движение. Если все используемое ими оборудование одинаково, и нет никаких различий в условиях экспериментов, они будут в полностью симметричных условиях. Аналогично, законы физики, которые каждый из них будет выводить из результатов экспериментов, также будут идентичны. Ни сами наблюдатели, ни проводимые ими эксперименты не будут подвержены никакому влиянию, т. е. никоим образом не будут зависеть от равномерного движения. Именно эта простая концепция устанавливает полную симметрию между такими наблюдателями и составляет содержание принципа относительности. Вскоре мы используем всю мощь этого принципа.

Скорость света

в начало 

в начало 

Второй ключевой компонент специальной теории относительности связан со светом и свойствами его распространения. Только что мы говорили, что утверждение «Джордж движется со скоростью 10 км/ч» не имеет смысла без указания ориентира для сравнения. Однако в результате почти столетних усилий ряда выдающихся физиков-экспериментаторов было показано: все наблюдатели согласятся с тем, что свет движется со скоростью 300000 км/с, независимо от ориентира для отсчета.
   Этот факт потребовал революционных изменений наших взглядов на Вселенную. Попробуем сначала понять его смысл, сопоставляя со сходными утверждениями применительно к более обычным объектам. Представим, что стоит прекрасный солнечный денек, и вы вышли на улицу поиграть в мяч с подругой. В течение какого-то времени вы оба лениво бросали мяч друг другу со скоростью, скажем, 6 м/с. Вдруг налетает неожиданная гроза, и вы оба бежите от нее в поисках укрытия. После того, как гроза прошла, вы решаете вернуться к игре в мяч, но вдруг замечаете, что что-то изменилось. Волосы вашей подружки встали дыбом и торчат в разные стороны, глаза округлились и стали безумными. Взглянув на ее руку, вы со страхом видите, что она больше не хочет играть в мяч, а вместо этого собирается запустить в вас ручной гранатой. Понятно, что ваш энтузиазм по поводу игры в мяч резко идет на убыль, вы поворачиваетесь и бежите. Когда ваша партнерша бросает гранату, она летит в вашу сторону, но поскольку вы бежите, скорость, с которой она приближается к вам, будет меньше 6 м/с. Исходя из повседневного опыта, можно утверждать, что вы можете бежать со скоростью, скажем, 3,6 м/с, и тогда ручная граната будет приближаться к вам со скоростью 6 – 3,6 = 2,4 м/с. Еще один пример. Если вы находитесь в горах, и на вас с грохотом мчится снежная лавина, вы стремитесь повернуться и броситься бежать, поскольку это уменьшит скорость, с которой снег приближается к вам, и даст хоть какую-то надежду на спасение. Как и раньше, для неподвижного наблюдателя скорость приближения лавины будет больше, чем с точки зрения наблюдателя, спасающегося бегством.
   Ну а теперь сравним все наши наивные наблюдения за мячами, гранатами и снежными лавинами с фактами, относящимися к свету. Чтобы облегчить сравнение, будемрассматривать луч света как совокупность крошечных «сгустков» или «комочков», известных под названием фотонов (более подробно свойства света будут обсуждаться в главе 4). Когда мы включаем сигнальные огни или испускаем лазерный луч, мы, на самом деле, выстреливаем пучок фотонов в ту сторону, в которую направлено устройство. Как и в случае с гранатами и лавинами, давайте рассмотрим, как движение фотона выглядит для наблюдателя, который находится в движении. Предположим, что ваша потерявшая рассудок подруга вместо гранаты взяла в руки мощный лазер. Если она стреляет из лазера в вашу сторону, а у вас есть под рукой подходящее измерительное устройство, вы можете обнаружить, что скорость приближения фотонов пучка составляет 300 000 км/с. А что произойдет, если вы станете убегать, как вы поступили, столкнувшись с перспективой поиграть с ручной гранатой? Какое значение скорости вы получите для приближающихся фотонов? Для большей внушительности, предположим, что в вашем распоряжении звездный корабль «Энтерпрайз», и вы удираете от своей подружки со скоростью, скажем, 50 000 км/с. Следуя логике традиционного ньютоновского подхода, поскольку вы убегаете, измеренная вами скорость приближающихся фотонов окажется меньше. Соответственно, вы можете рассчитывать, что они приближаются к вам со скоростью, равной 300 000 – 50 000 = 250 000 км/с.
   Растущее количество различных экспериментальных данных, первые из которых относятся еще к 1880-м гг., а также тщательный анализ и интерпретация максвелловской электромагнитной теории света, постепенно убедили научное сообщество, что на самом деле вы получите другой результат. Даже несмотря на то, что вы убегаете, результат вашего измерения скорости приближающихся фотонов все равно составит 300000 км/с и ни на йоту меньше. На первый взгляд это выглядит очень забавно и совершенно не согласуется с тем, что происходило, когда вы убегали от приближающегося мяча, гранаты или лавины, однако скорость приближающихся фотонов всегда будет составлять 300 000 км/с. Движетесь ли вы навстречу приближающимся фотонам или преследуете удаляющиеся, не имеет значения: скорость их приближения или удаления будет оставаться совершенно неизменной, и вы всегда получите значение 300000 км/с. Независимо от относительного движения между источником фотонов и наблюдателем, скорость света всегда будет одной и той же2).
   Технологические ограничения таковы, что описанные выше «эксперименты» со светом не могут быть проведены. Однако были проведены другие, сопоставимые эксперименты. Например, в 1913 г. голландский физик Биллем де Ситтер предположил, что для измерения влияния движения источника на скорость света могут использоваться движущиеся с большой скоростью двойные звезды (две звезды, которые вращаются одна вокруг другой). Результаты многочисленных экспериментов такого рода, выполненных за последние восемьдесят лет, продемонстрировали, с впечатляющей точностью, что скорость света от движущейся звезды равна скорости света, испускаемого неподвижной звездой, т.е. 300 000 км/с. Более того, в течение прошлого столетия было проведено большое число других, весьма тщательных экспериментов, в ходе которых скорость света измерялась прямо и косвенно в самых разных условиях. Были проверены также различные следствия постоянства скорости света, и все эти данные подтвердили неизменность скорости света.
   Если вам покажется, что это свойство света трудно усвоить, вы можете утешаться тем, что вы не одиноки. В начале XX в. физики потратили немало усилий на то, чтобы опровергнуть его. Они не смогли этого сделать. Эйнштейн, напротив, приветствовал постоянство скорости света, поскольку оно позволяло разрешить противоречие, которое беспокоило его с тех пор, когда он был подростком: независимо от того, с какой скоростью вы движетесь за лучом света, он по-прежнему будет удаляться от вас со скоростью света. Вы не можете сделать воспринимаемую скорость, с которой движется свет, ни на йоту меньше чем 300 000 км/с, не говоря уж о том, чтобы свет казался покоящимся. Вердикт окончательный, обжалованию не подлежит. Но триумфальное разрешениепарадокса скорости света было не просто маленькой победой. Эйнштейн понял, что постоянство скорости света означает ниспровержение всей ньютоновской физики.

Истина и ее последствия

в начало 

в начало 

Скорость является мерой того, на какое расстояние может переместиться объект в течение заданного промежутка времени. Если мы едем в автомобиле, двигающемся со скоростью 100 км/ч, это означает, конечно, что мы проедем 100 км, если сможем поддерживать эту скорость в течение часа. В такой формулировке скорость выглядит довольно тривиальным понятием, и вы можете удивиться, зачем поднимать столько шума по поводу скорости мячей, снежных лавин и фотонов. Однако, обратим внимание на то, что расстояние представляет собой характеристику пространства; в частности, оно представляет собой меру того, сколько пространства расположено между двумя точками. Заметим также, что длительность представляет собой характеристику времени, а именно, промежутка времени между двумя событиями. Следовательно, скорость связывает понятия пространства и времени. Рассуждая таким образом, мы видим, что любой факт, который бросает вызов обычным представлениям о скорости, например, постоянство скорости света, может привести к пересмотру общих представлений о пространстве и времени. Именно поэтому странный факт, касающийся скорости света, заслуживает тщательного исследования. Внимательное изучение привело Эйнштейна к удивительным выводам.

Влияние на время. Часть I

в начало 

в начало 

Используя постоянство скорости света, можно с минимальными усилиями показать, что привычная обыденная концепция времени неверна. Представим себе лидеров двух воюющих держав, сидящих на противоположных концах длинного стола переговоров, которые только что пришли к согласию о прекращении огня, но ни один из них не хочет подписывать это соглашение раньше другого. Генеральный секретарь ООН находит блестящее решение. Ровно посередине между двумя президентами помещается электрическая лампа, которая сначала выключена. Когда лампа включается, свет, который она излучает, достигает каждого из президентов одновременно, поскольку они находятся на одинаковом расстоянии от лампы. Каждый из президентов согласен подписать свою копию договора, когда он (или она) увидит свет. Этот план претворяется в жизнь, и соглашение подписывается к взаимному удовлетворению обеих сторон.
   Вдохновленный успехом, Генеральный секретарь использует тот же самый подход к двум другим воющим нациям, которые также достигли мирного соглашения. Единственное различие состоит в том, что эти президенты ведут переговоры, сидя на противоположных концах стола, который находится в вагоне поезда, движущегося с постоянной скоростью. Конкретно, лицо президента Форляндии обращено в сторону движения поезда, а лицо президента Бэкляндии – в обратную сторону. Знакомый с тем, что законы физики остаются неизменными и не зависят от состояния движения до тех пор, пока движение остается равномерным, генеральный секретарь игнорирует это различие и проводит церемонию подписания по сигналу электрической лампы точно так же, как и в предыдущем случае. Оба президента подписывают соглашение и празднуют конец вражды в кругу своих советников.
   Как раз в этот момент приходит известие, что между представителями обеих стран, наблюдавших за церемонией с платформы, мимо которой проходил поезд, опять начались столкновения. Пассажиры поезда, в котором проходили переговоры, потрясены, услышав, что причина вновь вспыхнувшей вражды, по словам жителей Форляндии, состоит в том, что их одурачили: их президент подписал договор раньше президента Бэкляндии. Но если все, кто присутствовал в поезде, были единодушны в том, что договор был подписан одновременно, как могло случиться, что наблюдатели, расположенные снаружи, видели это иначе?
   Давайте рассмотрим более подробно, как все это выглядело с точки зрения наблюдателя, расположенного на платформе. Сначалалампа в поезде выключена, затем в какой-то момент времени она включается, посылая лучи света в сторону обоих президентов. С точки зрения наблюдателя на платформе президент Форляндии движется навстречу свету, а президент Бэкляндии – удаляется от света. Это значит, что для наблюдателя на платформе свет должен пройти меньший путь, чтобы достичь президента Форляндии, который движется в сторону приближающегося света, чем до президента Бэкляндии, который удаляется от света. Это высказывание не касается скорости света, распространяющегося в сторону двух президентов – мы уже отмечали, что независимо от состояния движения источника и наблюдателя, скорость света всегда остается одной и той же. Мы говорим только о том, какое расстояние, с точки зрения наблюдателя на платформе, должен пройти свет от вспышки лампы, прежде чем он достигнет каждого из президентов. Поскольку для президента Форляндии это расстояние меньше, чем для президента Бэкляндии, а скорость света одна и та же при движении в обоих направлениях, свет достигнет президента Форляндии раньше. Вот почему граждане Форляндии сочли себя обманутыми.
   Слушая рассказы свидетелей, которые передает служба новостей CNN, Генеральный секретарь, оба президента и все их советники не могут поверить своим ушам. Они все согласны в том, что лампа была надежно закреплена ровно посередине расстояния между двумя президентами и, следовательно, свет, который излучала лампа, прошел одинаковое расстояние до каждого из президентов. Поскольку скорость света, излученного вправо и влево, одинакова, они считают, и сами наблюдали это, что свет достиг каждого из президентов одновременно.
   Кто же прав, те, кто ехал в поезде, или те, кто стоял на платформе? Наблюдения каждой группы и их аргументы безупречны. Правы и те, и другие. Как и в случае с двумя обитателями космического пространства, Джорджем и Грейс, каждая точка зрения одинаково истинна. Только вот эти две истины противоречат друг другу. Между тем на кону важный политический вопрос: действительно ли оба президента подписали соглашение одновременно? Наблюдения и аргументы, изложенные выше, с неизбежностью ведут нас к выводу, что с точки зрения тех, кто находимся в поезде, договор был подписан одновременно, а с точки зрения тех, кто стоял на платформе – не одновременно. Иными словами, события, которые являются одновременными с точки зрения одних наблюдателей, могут быть неодновременными с точки зрения других, если эти две группы наблюдателей движутся по отношению друг к другу.
   Это удивительный вывод. Он представляет собой одно из самых глубоких проникновений в сущность нашего мира, когда-либо сделанных человеком. Если спустя долгое время после того, как вы закончите читать эту книгу, из всей этой главы вы сможете вспомнить только несчастливую попытку разрядки международных отношений, это будет означать, что вы уловили суть открытия Эйнштейна. Это совершенно неожиданное свойство времени было установлено без использования математического аппарата, доступного лишь избранным, без запутанных цепочек логических выводов – только на основе факта постоянства скорости света. Заметьте, что если бы скорость света не была постоянной, а вела себя в соответствии с нашими интуитивными представлениями, основанными на медленном движении мячей и снежков, стоявшие на платформе наблюдатели согласились бы с теми, кто был в поезде. Наблюдатель с платформы продолжал бы считать, что фотоны должны пройти большее расстояние до президента Бэкляндии, чем до президента Форляндии. Однако обычная интуиция подсказывает, что в сторону президента Бэкляндии свет будет двигаться быстрее, получив дополнительный «толчок» от поезда, двигающегося вперед. Аналогичным образом, эти наблюдатели могли полагать, что свет, приближающийся к президенту Бэкляндии, будет двигаться медленнее, поскольку он увлекается назад движением поезда. Если учесть эти (ошибочные) доводы, наблюдатели на платформе увидели бы, что лучи света достигнут каждого президента одновременно. Однако в реальном мире свет не увеличивает и не уменьшает своей скорости, его нельзяподтолкнуть или затормозить. Следовательно, наблюдатели на платформе будут правы, утверждая, что сначала свет дошел до президента Форляндии.
   Постоянство скорости света требует, чтобы мы отказались от устаревшего представления о том, что одновременность является универсальным понятием, которое воспринимается всеми одинаково, независимо от состояния движения. Не существует универсальных часов, которые, как считалось раньше, бесстрастно отсчитывают одинаковые секунды здесь, на Земле, на Марсе, на Юпитере, в туманности Андромеды и в любом другом закоулке Вселенной. Напротив, наблюдатели, движущиеся относительно друг друга, будут иметь различное мнение по вопросу об одновременности событий. Как говорилось выше, эта неотъемлемая характеристика мира, в котором мы живем, является столь непривычной потому, что связанные с ней эффекты чрезвычайно малы при скоростях, с которыми мы сталкиваемся в повседневной жизни. Если бы стол для ведения переговоров имел длину 30 метров, а поезд двигался со скоростью 16 км/ч, наблюдатели на платформе могли бы «увидеть», что свет достиг президента Форляндии на одну миллионную одной миллиардной доли секунды раньше, чем он дошел до президента Бэкляндии. Это различие действительно существует, но оно столь мало, что не может быть обнаружено непосредственно с помощью человеческих чувств. Если бы поезд двигался гораздо быстрее, скажем, со скоростью 270 000 км/с, то с точки зрения наблюдателя, находящегося на платформе, свет дошел бы до президента Бэкляндии за время, в 20 раз большее, чем до президента Форляндии. При высоких скоростях поразительные эффекты специальной теории относительности становятся все более заметными.

Влияние на время. Часть II

в начало 

в начало 

Дать абстрактное определение времени трудно – попытки сделать это часто кончаются отсылкой на само слово «время» или приводят к запутанным лингвистическим конструкциям, цель которых состоит в том, чтобы избежать употребления этого слова. Вместо того чтобы идти этим путем, можно принять прагматическую точку зрения и определить время как то, что измеряется с помощью часов. Конечно, это переносит бремя определения на слово «часы»; мы можем довольно нестрого определить часы как устройство, которое совершает идеально регулярные циклы движения. В этом случае можно измерять промежутки времени, подсчитывая число циклов, выполненных нашими часами. Обычные часы, например, наручные часы, удовлетворяют этому определению – в них имеются стрелки, совершающие равномерные циклы движения, и мы действительно можем измерять протекшее время, подсчитывая число оборотов (или долей оборотов), которые стрелка совершит за время между выбранными событиями.
   Конечно, выражение «идеально регулярные циклы движения» неявно использует понятие времени, поскольку слово «равномерные» означает одинаковую длительность каждого цикла. С практической точки зрения мы решаем эту задачу, изготавливая часы из простых физических компонентов, которые основаны на фундаментальных явлениях и, согласно нашим представлениям, будут участвовать в повторяющихся циклических процессах, никак не изменяющихся от цикла к циклу. Простыми примерами являются дедушкины часы с качающимся туда-сюда маятником, а также атомные часы, основанные на повторяющихся атомных процессах.
   Наша цель состоит в том, чтобы понять, как движение влияет на ход времени. Поскольку мы определили время, используя понятие часов, мы можем заменить наш вопрос другим: «Как движение влияет на ход часов?» Важно в самом начале подчеркнуть, что наше обсуждение не будет касаться того, как механические элементы конкретных часов реагируют на толчки и удары, которые могут возникать при движении по тряской дороге. Мы будем рассматривать только простейший и самый ясный тип движения с совершенно постоянной скоростью. Следовательно, часы не будут испытывать никакой тряски или ударов. Нас будет интересовать фундаментальный вопрос: как движение влияет на ход времени, т. е. в чем состоит фундаментальное влияние движения на ход всех часов, независимо от их внешнего вида или конструкции.
   Для этой цели мы будем использовать самые простые по принципу действия (но и самые непрактичные) часы. Они известны под названием «световых часов» и состоят из двух зеркал, закрепленных друг напротив друга, между которыми движется один фотон, поочередно отражающийся от каждого из них (см. рис. 2.1).


Рис 2.1. Часы «тикают» каждый раз, когда фотон завершает свой путь туда и обратно

Если зеркала расположены на расстоянии примерно 15 см друг от друга, путешествие фотона «туда и обратно» между зеркалами займет примерно одну миллиардную долю секунды. Будем считать, что один «тик» часов происходит каждый раз, как фотон завершает свой путь туда и обратно; следовательно, один миллиард тиков соответствует одной секунде.
   Мы можем использовать световые часы как секундомер для измерения времени, прошедшего между двумя событиями – для этого мы подсчитываем, сколько тиков этих часов произошло в течение интересующего нас периода, и умножаем это число на длительность одного тика. Например, если мы хронометрируем лошадиные бега и установили, что число тиков движения фотона между стартом и финишем составило 55 миллиардов, мы можем утверждать, что скачки длились 55 секунд.
   Причина, по которой мы используем световые часы, состоит в том, что их механическая простота не требует лишних деталей и, тем самым, дает ясное понимание того, как движение влияет на ход времени. Для того чтобы убедиться в этом, представим себе, что мы наблюдаем за ходом световых часов, стоящих на соседнем столе. Затем вдруг появляются вторые световые часы, движущиеся мимо первых с постоянной скоростью (см. рис. 2.2).


Рис. 2.2. На переднем плане расположены неподвижные световые часы. Световые часы, расположенные в глубине, движутся с постоянной скоростью

Вопрос, который мы задаем, состоит в следующем: будут ли движущиеся часы идти с той же скоростью, что и неподвижные?
   Чтобы ответить на этот вопрос, рассмотрим с нашей точки зрения путь, который должен пройти фотон в движущихся часах за время одного тика. Фотон начинает свой путь от основания движущихся часов, как показано на рис. 2.2, и сначала движется к верхнему зеркалу. Поскольку с нашей точки зрения сами часы движутся, фотон должен перемещаться под углом, как показано на рис. 2.3.


Рис. 2.3. С нашей точки зрения фотон в движущихся часах перемещается по диагональному пути

Если фотон не будет двигаться по этому пути, он не попадет в верхнее зеркало и вылетит из часов. Поскольку наблюдатель, находящийся на движущихся часах, с полным основанием может считать эти часы неподвижными, а весь окружающий мир движущимся, мы уверены, что фотон попадет в верхнее зеркало и, следовательно, изображенная траектория является правильной. Фотон отражается от верхнего зеркала и снова движется по диагонали, для того чтобы попасть в нижнее зеркало. Этим завершается тик движущихся часов. Простой, но существенный момент состоит в том, что удвоенный диагональный путь, которым представляется траектория движения фотона, длиннее, чем путь вверх-вниз по прямой, по которому движется фотон в непо-движных часах. В дополнение к движению вверх и вниз по вертикали, фотон в движущихся часах, с нашей точки зрения, должен также перемещаться вправо. Далее, постоянство скорости света говорит нам, что фотон в движущихся часах перемещается с той же скоростью, что и фотон в неподвижных часах. Но поскольку он должен пройти большее расстояние, чтобы выполнить один тик, его тики будут более редкими. Этот простой аргумент устанавливает, что с нашей точки зрения движущиеся световые часы будут идти медленнее, чем неподвижные. И, поскольку мы согласились, что число тиков непосредственно отражает продолжительность прошедшего времени, мы видим, что для движущихся часов ход времени замедляется. У читателя может возникнуть вопрос, не может ли это быть просто отражением какого-то особого свойства световых часов, которое не распространяется на дедушкин хронометр или на часы фирмы «Ролекс». Будет ли время, измеренное более привычными часами, тоже замедляться? Использование принципа относительности дает нам в ответ обнадеживающее «да». Закрепим часы «Ролекс» на верхней части каждых из наших световых часов и вернемся к предыдущему эксперименту. Как уже говорилось, неподвижные часы и прикрепленный к ним «Ролекс» измерят одинаковое время, при этом одному миллиарду тиков световых часов будет соответствовать одна секунда, измеренная «Ролексом». А как насчет движущихся световых часов и того «Ролекса», который прикреплен к ним? Замедлится ли ход движущегося «Ролекса», будет ли он идти синхронно со световыми часами, на которых он закреплен? Чтобы сделать наше рассуждение более убедительным, представим, что установка, состоящая из световых часов и прикрепленного к ним «Ролекса», движется потому, что она прикручена болтами к полу не имеющего окон вагона поезда, движущегося по идеально прямым рельсам с постоянной скоростью. Согласно принципу относительности, для наблюдателя, находящегося в поезде, не существует способа обнаружить какое-либо влияние движения поезда. Однако если световые часы и «Ролекс» не будут показывать одинаковое время, это как раз и будет очевидным признаком влияния движения. Таким образом, движущиеся световые часы и прикрепленный к ним «Ролекс» должны продолжать показывать одинаковое время; «Ролекс» должен замедлить свой ход ровно в той же степени, что и световые часы. Независимо от марки, типа или устройства, часы, которые движутся друг относительно друга, будут регистрировать различный ход времени.
   Обсуждение световых часов показывает также, что точная разница в показаниях времени между неподвижными и движущимися часами зависит от того, насколько дальше должен переместиться фотон в движущихся часах, чтобы завершить элементарный цикл. Это, в свою очередь, зависит от того, насколько быстро перемещаются движущиеся часы: с точки зрения неподвижного наблюдателя, чем быстрее двигаются часы, тем дальше вправо должен улететь фотон. Таким образом, мы приходим к выводу, что при сравнении с неподвижными часами ход движущихся часов будет становиться тем медленнее, чем быстрее они движутся3.
   Чтобы получить представление о масштабах описываемого явления, заметим, что фотон совершает свой тик за время, равное примерно одной миллиардной доле секунды. Чтобы часы могли пройти заметное расстояние в течение одного тика, они должны двигаться очень быстро – их скорость должна составлять существенную долю скорости света. При движении с обычными скоростями, скажем, 16 км/ч, расстояние, на которое они переместятся вправо за один тик, будет микроскопическим – всего около 0,5 миллионных долей сантиметра. Дополнительное расстояние, которое должен пройти движущийся фотон, будет ничтожным и, соответственно, ничтожным будет влияние на скорость хода движущихся часов. Опять же, в силу принципа относительности, это справедливо для всех часов, т. е. для самого времени. Поэтому существа типа нас, перемещающиеся по отношению друг к другу со столь малыми скоростями, обычно остаются в неведении об искажении хода времени. Хотя соответствующие эффекты, конечно, присутствуют, они невероятно малы. С другой стороны, если бы мы могли, при-хватив с собой движущиеся часы, перемешаться со скоростью, равной, скажем, трем четвертям скорости света, то, согласно уравнениям специальной теории относительности, неподвижный наблюдатель установил бы, что наши часы идут со скоростью, равной двум третям от скорости хода его часов. Согласитесь, это заметная разница.

Жизнь на бегу

в начало 

в начало 

Мы увидели, что постоянство скорости света ведет к тому, что движущиеся световые часы будут идти медленнее, чем неподвижные. Согласно принципу относительности, это должно быть справедливо не только для световых, но и для любых других часов, т. е. это должно быть справедливо для самого времени. Для наблюдателя, находящегося в движении, время течет медленнее, чем для неподвижного. Если довольно простое рассуждение, которое привело нас к этому выводу, является верным, то не сможет ли человек прожить дольше, находясь в движении, по сравнению с тем случаем, когда он остается неподвижным? В конце концов, если время течет медленнее для человека, находящегося в движении, по сравнению с тем, кто остается в покое, тогда это различие должно распространяться не только на время, измеренное с помощью часов, но и на время, отсчитанное по ударам сердца, и на старение организма. Недавно было получено прямое подтверждение того, что это действительно так, правда, речь шла не о средней продолжительности жизни человека, а о свойствах частиц микромира – мюонов. Однако здесь есть одна хитрость, которая не позволяет нам объявить, что найден источник вечной молодости.
   Мюоны, находящиеся в покое в лаборатории, разрушаются в ходе процесса, который очень напоминает радиоактивный распад, причем средняя продолжительность существования мюона составляет две миллионных доли секунды. Это разрушение представляет собой экспериментальный факт, подтвержденный огромным фактическим материалом. Все это выглядит так, как если бы мюон жил с пистолетом, приставленным к виску; когда он достигает возраста в две миллионные доли секунды, он нажимает на спусковой крючок и разлетается на электроны и нейтрино. Однако когда эти мюоны не сидят в покое в лаборатории, а мчатся в устройстве, называемом ускорителем частиц, который разгоняет их почти до скорости света, их средняя продолжительность жизни, измеренная учеными, резко увеличивается. Это действительно происходит. При скорости 298 000 км/с (примерно 99,5 % скорости света) время жизни мюона увеличивается в десять раз. Объяснение, согласно специальной теории относительности, состоит в том, что «наручные часы», которые носят мюоны, идут гораздо медленнее, чем лабораторные часы. Поэтому спустя долгое время после того, как лабораторные часы покажут, что мюону пора нажимать на спусковой крючок и погибать, часы, которые носит мчащийся мюон, будут показывать, что до рокового момента еще далеко. Это весьма непосредственная и очень яркая демонстрация влияния движения на течение времени. Если бы люди носились с такой же скоростью, как мюоны, продолжительность их жизни возросла бы во столько же раз. Вместо того чтобы жить семьдесят лет, люди жили бы 700 4).
   Где же подвох? Хотя лабораторные наблюдатели видят, что движущиеся с большой скоростью мюоны живут гораздо дольше, чем их неподвижные собратья, это связано с тем, что для мюонов, находящихся в движении, время течет намного медленнее. Это замедление времени распространяется не только на часы, которые они носят, но и на все виды их деятельности. Например, если неподвижный мюон может прочитать 100 книг за время своей короткой жизни, то его мчащийся с большой скоростью родственник сможет прочитать те же самые 100 книг, поскольку, хотя продолжительность его жизни увеличится по сравнению с неподвижным мюоном, скорость чтения, а также всего другого в его жизни уменьшится в такое же число раз. С точки зрения лабораторного наблюдателя это равносильно тому, что движущийся мюон живет медленной жизнью; он живет дольше, чем неподвижный мюон, но «количество жизни»останется тем же самым. Такой же вывод, конечно, будет справедлив и для мчащихся людей с их средней продолжительностью жизни, измеряемой веками. С их точки зрения это будет обычная жизнь. С нашей точки зрения они будут жить в чрезвычайно замедленном ритме и поэтому средняя продолжительность их жизни составляет огромный промежуток нашего времени.

И все же: кто движется?

в начало 

в начало 

Относительность движения является ключом к пониманию теории Эйнштейна и одновременно источником недоразумений. Вы могли заметить, что перестановка точек зрения приводит к взаимному изменению ролей «движущихся» мюонов, чьи часы, как мы установили, идут медленно, и их «неподвижных» собратьев. В случае с Джорджем и Грейс каждый из них имел равное право объявить себя неподвижным, а другого – движущимся. Но мюоны, о которых мы говорим, что они движутся, также имеют все основания сказать, что с их точки зрения неподвижными являются они, а движутся (в противоположном направлении) те мюоны, которые названы «неподвижными». Это ведет к совершенно противоположному выводу, что часы, которые носят мюоны, названные нами неподвижными, идут медленнее, чем часы мюонов, которых мы считали движущимися.
   Рассматривая подписание договора с помощью сигнальной лампы, мы уже сталкивались с ситуацией, в которой различные точки зрения ведут к выводам, выглядящим совершенно несовместимыми. Тогда мы, следуя основным принципам специальной теории относительности, отказались от изжившей себя концепции, состоящей в том, что каждый, независимо от состояния его движения, согласится с тем, что события произошли одновременно. Однако то противоречие, которое мы рассматриваем сейчас, выглядит хуже. Как может каждый из двух наблюдателей заявлять, что часы другого идут медленнее? Еще более поразительно то, что различные, но одинаково правомерные точки зрения мюонов, похоже, приводят к заключению, что каждая группа объявит, скорбно, но твердо, что они умрут первыми. Мы усвоили, что мир может иметь некоторые неожиданно странные свойства, но хранили надежду, что он хотя бы не будет логически противоречив. Так что же происходит?
   Как и со всеми кажущимися парадоксами, вытекающими из специальной теории относительности, эти логические противоречия разрешаются при более тщательном изучении, позволяя по-новому глубже понять устройство Вселенной. Чтобы избежать еще большего антропоморфизма, вернемся от мюонов к Джорджу и Грейс, которые теперь в дополнение к сигнальным огням имеют на своих скафандрах яркие цифровые часы. С точки зрения Джорджа он неподвижен, а Грейс, с ее зелеными сигнальными огнями и большими цифровыми часами, появляется вдалеке и проплывает мимо него во мраке пустого космического пространства. Он замечает, что часы Грейс идут медленнее, чем его часы (степень замедления зависит от скорости, с которой они пролетают мимо друг друга). Если бы он был хоть чуть наблюдательнее, он мог бы заметить, что не только часы у Грейс идут медленнее, но и все, что она делает – то, как она помахала ему рукой, скорость, с которой она мигала глазами, – все происходит в замедленном темпе. С точки зрения Грейс те же самые наблюдения относятся к Джорджу.
   Это кажется парадоксальным, однако давайте попробуем поставить точный эксперимент, который разрешит логическое противоречие. Простейшая возможность состоит в том, чтобы, когда Джордж и Грейс встретятся в пространстве, они оба установили свои часы на 12:00. Так как они путешествуют по отдельности, каждый утверждает, что часы другого отстают. Чтобы избежать этого противоречия, Джордж и Грейс должны встретиться вновь и сравнить, сколько времени прошло на их часах. Но как они могут сделать это? Ну да, у Джорджа ведь есть ранцевый двигатель, который он может использовать, чтобы, как он считает, догнать Грейс. Но если он сделает это, симметрия двух точек зрения, которая является причиной парадокса, будет нарушена, поскольку Джорджу придется испытать дей-ствие ускорения, которое не является свободным движением. Когда они воссоединятся таким манером, часы Джорджа точно будут показывать меньше времени, так как он теперь определенно может сказать, что он был в движении, поскольку ощущал его. Теперь точки зрения Джорджа и Грейс перестают быть равноправными. Включив свой ранцевый двигатель, Джордж отказался от утверждения, что он находится в покое.
   Если Джордж последует за Грейс подобным образом, различия в показаниях их часов будут зависеть от их относительной скорости и от того, как Джордж использовал свой ранцевый двигатель. Как нам уже известно, если скорости малы, различия должны быть минимальны. Но если скорость составляет значительную часть скорости света, различие может достигать минут, суток, лет, веков и более. В качестве конкретного примера представим, что относительная скорость Джорджа и Грейс, когда они разлетаются в разные стороны, составляет 99,5 % от скорости света. Далее, пусть по своим часам Джордж ждет 3 года и включает свой ранцевый двигатель, который мгновенным толчком посылает его назад к Грейс с той скоростью, с которой они перед этим разлетались, т. е. равной 99,5 % скорости света. Когда он достигает Грейс, по его часам проходит 6 лет, так как чтобы догнать Грейс, ему нужно 3 года. В то же время, как показывает математика специальной теории относительности, по ее часам пройдет 60 лет. Это не шутка: Грейс придется основательно покопаться в памяти, чтобы вспомнить Джорджа, проплывшего мимо нее в пространстве 60 лет назад. С другой стороны, для Джорджа это было всего 6 лет назад. Фактически, движение Джорджа сделало его путешественником во времени, хотя и в очень узком смысле: он совершил путешествие в будущее Грейс.
   Необходимость поставить часы рядом, чтобы непосредственно сравнить показания, может показаться незначащей деталью, но в действительности именно в этом суть дела. Можно придумать множество фокусов для того, чтобы обойти это слабое место парадокса, но все они неизбежно провалятся. Например, пусть вместо того, чтобы соединять часы, Джордж и Грейс сравнят их показания, созвонившись по сотовому телефону? Если бы такая связь была мгновенной, мы бы столкнулись с непреодолимым противоречием: с точки зрения Грейс часы Джорджа идут медленнее, и, следовательно, он должен сообщить, что прошло меньше времени; в то же время с точки зрения Джорджа замедлили ход часы Грейс, поэтому именно она должна сказать, что прошло меньше времени. Они оба не могут быть правы, и мы попадаем в затруднительное положение. Ключевым моментом здесь, конечно, является то, что как любой другой вид связи, сотовые телефоны не могут передавать сообщения мгновенно. Сотовые телефоны используют радиоволны, которые представляют собой разновидность электромагнитных колебаний, следовательно, сигналы, которые они передают, распространяются со скоростью света. Это означает, что необходимо некоторое время на то, чтобы сигналы достигли адресата, что дает достаточную задержку для того, чтобы точки зрения наблюдателей перестали противоречить друг другу.
   Попробуем сначала увидеть картину глазами Джорджа. Представим, что через каждый час Джордж повторяет в свой сотовый телефон: «Двенадцать часов дня, полет нормальный»; «час дня, полет нормальный» и т. д. Поскольку с его точки зрения часы Грейс замедлились, на первый взгляд, он подумает, что Грейс будет получать эти сообщения до того, как на ее часах настанет час, указанный в сообщении. Поэтому он будет считать, что Грейс должна согласиться с тем, что ее часы идут медленнее. Но потом он подумает: «Поскольку Грейс удаляется от меня, сигнал, который я посылаю ей по сотовому телефону, должен проходить все большее расстояние, чтобы достичь ее. Может быть, время, затрачиваемое на то, чтобы пройти это дополнительное расстояние, компенсирует замедление ее часов». Догадка Джорджа о том, что здесь есть два конкурирующих эффекта – замедление хода часов Грейс и время пробега его сигнала, – заставляет его присесть и попытаться количественно оценить суммарный эффект этих двух величин. Полученный им результат показывает, что эффект времени пробегас избытком компенсирует замедление хода часов Грейс. Он приходит к удивительному выводу, что Грейс будет получать его сообщения о том, что наступил очередной час, после того, как этот час наступит на ее часах. В действительности, поскольку Джордж осведомлен о том, что Грейс хорошо знает физику, он понимает, что она учтет время пробега сигнала при оценке хода его часов на основе его сообщений по сотовому телефону. Небольшие дополнительные расчеты показывают, что даже с учетом времени пробега выполненный Грейс анализ сообщений Джорджа приведет ее к выводу, что его часы замедлились сильнее, чем ее.
   Точно такой же анализ может быть проведен, если мы примем точку зрения Грейс на ее сообщения Джорджу о том, что прошел очередной час. Сначала замедление хода часов Джорджа (с ее точки зрения) заставит ее подумать, что он получит ее очередное сообщение до того, как пошлет свое собственное. Но когда она вспомнит, что ее сигнал должен пройти все увеличивающееся расстояние, чтобы достичь удаляющегося в темноту Джорджа, она поймет, что на самом деле он будет получать их после того как отправит свои. Опять же, она поймет, что даже если Джордж учтет время пробега согласно ее сообщениям по сотовому телефону, он будет считать, что ее часы идут медленнее, чем его.
   До тех пор, пока Джордж или Грейс не испытают ускорения, их точки зрения будут совершенно равно обоснованы. Каким бы парадоксальным это ни казалось, они поймут, что каждый имеет полное право считать, что часы другого замедлили ход.

Влияние движения на пространство

в начало 

в начало 

Предыдущее обсуждение показало, что с точки зрения наблюдателя движущиеся часы идут медленнее, чем его собственные, т. е. что ход времени зависит от движения. Теперь мы сделаем еще один шаг и увидим, что движение оказывает столь же поразительное влияние на пространство. Вернемся к Слиму и Джиму, которые находятся на автодроме.
   Как мы уже говорили, находясь в автосалоне, Слим тщательно измерил рулеткой длину своего нового автомобиля. Когда Слим мчался по гоночной полосе, Джим не мог использовать этот способ для измерения длины автомобиля, поэтому он применил косвенный метод. Один из таких методов, как мы указывали выше, состоит в следующем: Джим запускает секундомер, когда его достигает передний бампер автомобиля, и останавливает, когда мимо проходит задний бампер. Умножив полученное время на скорость автомобиля, Джим может определить его длину.
   Используя наше вновь обретенное знание тайн времени, мы понимаем, что с точки зрения Слима сам он неподвижен, а Джим движется и, следовательно, Слим видит, что часы Джима замедлили свой ход. В результате Слиму становится ясно, что косвенное измерение длины автомобиля, проведенное Джимом, даст заниженное значение по сравнению с тем, которое он получил в автосалоне, поскольку в своих расчетах (длина равна скорости, умноженной на время) Джим использовал время, полученное с помощью часов, которые замедлили свой ход. Если часы идут медленнее, и время, которое он получит, будет меньше, – в результате его вычисления дадут меньшую длину.
   Исходя из этого, Джим поймет, что в движении длина автомобиля Слима меньше, чем когда автомобиль находится в состоянии покоя. Это пример проявления общего принципа, состоящего в том, что наблюдатели видят сокращение движущегося объекта в направлении его перемещения. Например, уравнения специальной теории относительности показывают, что если тело движется со скоростью, составляющей примерно 98 % скорости света, то неподвижный наблюдатель будет видеть его сократившимся на 80 % по сравнению с длиной тела в состоянии покоя. Это явление иллюстрируется рис. 2.4.


Рис. 2.4. Движущийся объект сокращается в направлении своего движения

Движение в пространстве-времени

в начало 

в начало 

Постулат постоянства скорости света привел к замене традиционного представления о пространстве и времени как о неизменных и объективных величинах новым понятием, где пространство и время неразрывно зависят от относительного движения наблюдателя и объекта наблюдения. Поняв, что движущиеся объекты сокращаются в направлении движения, мы могли бы на этом закончить обсуждение. Однако специальная теория относительности еще глубже объединяет все рассмотренные нами явления.
   Чтобы понять это, представим себе не очень практичный автомобиль, который быстро достигает фиксированной рекомендуемой скорости 160 км/ч и поддерживает ее, не ускоряясь и не замедляясь, пока не будет выключен двигатель, и он прокатится по инерции до остановки.
   Представим также, что растущая известность Слима как талантливого пилота привела к тому, что он получил предложение провести испытания этого автомобиля на длинной, прямой и широкой трассе, расположенной посреди плоской равнины в пустыне. Поскольку расстояние между стартом и финишем составляет 16 км, автомобиль должен покрыть это расстояние за одну десятую часть часа, т.е. за шесть минут. Просматривая результаты десятков испытательных заездов, Джим, подрабатывающий автомобильным инженером, столкнулся с тем, что хотя большинство результатов в точности равнялось шести минутам, несколько последних были существенно хуже: 6,5, 7 и даже 7,5 минут. Сначала он заподозрил наличие какой-то неисправности, поскольку такое время указывало на то, что в течение последних трех заездов автомобиль двигался медленнее, чем со скоростью 160 км/ч. Однако тщательное исследование автомобиля убедило его, что тот находится в превосходном состоянии. Не сумев понять причину таких необычных результатов, он обратился к Слиму, попросив его рассказать об этих последних заездах. Объяснение Слима оказалось простым. Он сказал Джиму, что поскольку трасса проходит с востока на запад, а заезды проходили в конце дня, Солнце било ему прямо в глаза. В течение последних трех заездов условия были столь плохими, что он отклонился от оси трассы на небольшой угол. Он нарисовал свой путь в ходе трех последних заездов, который показан на рис. 2.5. Причина появления трех последних результатов стала совершенно ясна: путь от линии старта до линии финиша при движении под углом к оси трассы будет больше, следовательно, при той же самой скорости в 160 км/ч он займет больше времени. Другими словами, при движении по пути, проходящему под углом, часть скорости в 160 км/ч уходит на движение в направлении с юга на север, в результате на то, чтобы пройти маршрут с востока на запад, останется меньше скорости. Поэтому, чтобы пройти трассу, требуется немного больше времени.


Рис. 2.5. Из-за того что Солнце в конце дня слепило в глаза, в течение последних трех заездов Слим двигался под все более увеличивающимся углом

Как уже отмечалось, объяснение Слима является простым и понятным. Однако оно заслуживает того, чтобы немного его перефразировать ради концептуального прорыва. Направления с севера на юг и с востока на запад представляют собой два независимых пространственных измерения, в которых может двигаться автомобиль. (Он может также перемещаться в вертикальном направлении, например, при движении через горный перевал, однако в данном случае эта возможность нас не интересует.) Объяснение Слима показывает: несмотря на то, что в ходе каждого заезда автомобиль двигался со скоростью 160 км/ч, в тех последних заездах движение разделялось между двумя направлениями, и поэтому казалось, что в направлении восток-запад оно происходит со скоростью меньше 160 км/ч. В предшествующих заездах все 160 км/ч тратились исключительно на движение с востока на запад; в трех последних заездах эта скорость была частично направлена с севера на юг.
   Эйнштейн обнаружил, что точно та же идея – разделение движения между различными измерениями – лежит в основе всех замечательных физических проявлений специальной теории относительности, если только мы осознаем, что движение тела распределяется не только между пространственными измерениями, но что временное измерение также может принимать участие в этом разделении. На самом деле, в большинстве случаев большая часть перемещения объекта происходит как раз во времени, а не в пространстве. Посмотрим, что это означает.
   Понятие движения в пространстве приходит в нашу жизнь очень рано. Хотя и нечасто приходится думать об этом с такой точки зрения, нам также известно, что мы, наши друзья, окружающие нас вещи и т.д. движемся во времени. Даже если мы праздно сидим перед телевизором и бросаем взгляд на стенные или наручные часы, мы видим, что стрелки на часах неумолимо движутся вперед, постоянно «перемещаясь вперед во времени». Мы и все, что нас окружает, стареем, неизбежно переходя от одного момента времени к следующему. В действительности, математик Герман Минковский, а затем и Эйнштейн являлись сторонниками представления о времени как еще об одном измерении Вселенной, в некоторых отношениях весьма похожим на три пространственных измерения, в которые мы погружены. Хотя это и звучит на первый взгляд абстрактно, понятие времени как измерения на самом деле вполне конкретно. Когда мы хотим с кем-то встретиться, мы говорим, где «в пространстве» мы рассчитываем встретиться с ним – например, на 9 этаже здания на углу 53-й улицы и 7-й авеню. В этом описании содержатся три элемента информации (9 этаж, 53-я улица, 7-я авеню), описывающих конкретное место в трех пространственных измерениях Вселенной. Не менее важным, однако, является указание времени нашей встречи, например, в 3 часа пополудни. Эта часть информации говорит нам, где «во времени» состоится наша встреча. Следовательно, события описываются четырьмя элементами информации: тремя, указывающими расположение в пространстве, и одним, указывающим положение во времени. Подобные данные, как принято говорить, характеризуют положение события в пространстве и времени или, для краткости, в пространстве-времени. В этом смысле время представляет собой еще одно измерение.
   Поскольку с этой точки зрения пространство и время являются просто различными примерами измерений, можем ли мы говорить о скорости движения объекта во времени подобно тому, как мы говорим о скорости его движения в пространстве? Да, можем.
   Ключ к разгадке того, как это сделать, можно найти в рассмотренных выше основных положениях. Когда тело движется в пространстве относительно нас, его часы идут медленнее по сравнению с нашими. Иными словами, скорость его движения во времени замедляется. Новая идея, которую мы должны понять, состоит в следующем. Эйнштейн провозгласил, что все объекты во Вселенной всегда движутся в пространстве-времени с одной постоянной скоростью – скоростью света. На первый взгляд, эта идея выглядит странно, – мы привыкли к тому, что объекты обычно движутся со скоростями, которые значительно меньше скорости света. Мы неоднократно подчеркивали, что именно по этой причине релятивистские эффекты столь непривычны в нашей повседневной жизни. Все это правда. Но сейчас мы говорим о суммарной скорости тел во всех четырех измерениях – трех пространственных и одном временном, и скорость тела равна скорости света именно в этом обобщенном смысле.Для того чтобы полнее понять это положение и осознать его важность, заметим, что как в случае с непрактичным «односкоростным» автомобилем, рассмотренным выше, эта одна скорость может быть разделена между различными измерениями пространства и времени. Если тело неподвижно (по отношению к нам) и, следовательно, совсем не движется в пространстве, то, по аналогии с первыми заездами автомобиля, все движение тела приходится на перемещение в одном измерении, – в нашем случае, во временном измерении. Более того, все тела, которые находятся в покое по отношению к нам и друг к другу, движутся во времени (стареют) с совершенно одинаковой скоростью. Однако если тело движется в пространстве, это означает, что часть его движения во времени будет отвлечена. Как в случае с автомобилем, движущимся под углом, это разделение движения означает, что во времени тело будет двигаться медленнее, чем его неподвижные собратья, поскольку часть его движения будет отвлечена на перемещение в пространстве. Это означает, что часы будут идти медленнее, если они перемещаются в пространстве. Именно с этим мы сталкивались ранее. Теперь мы видим, что время замедляется, когда тело движется относительно нас потому, что оно отвлекает часть своего движения во времени на движение в пространстве. Таким образом, скорость движения тела в пространстве является просто отражением того, какая часть отвлекается от движения тела во времени6.
   Мы также видим, что отсюда немедленно следует факт существования ограничения на скорость тела в пространстве: максимально возможная скорость движения в пространстве будет достигнута, если все движение тела во времени перейдет в движение в пространстве. Это происходит тогда, когда все движение со скоростью света во времени направляется на движение со скоростью света в пространстве. Но если задействована вся скорость движения во времени, получится наибольшая скорость движения в пространстве, которую только может развить любое тело. В нашем примере с автомобилем это соответствует случаю, когда автомобиль движется строго в направлении север-юг. У автомобиля в этом случае не остается скорости на движение в направлении восток-запад. Так и у тела, перемещающегося в пространстве со скоростью света, не остается скорости на движение во времени. Поэтому фотоны никогда не стареют; фотон, который был излучен во время Большого взрыва, имеет тот же самый возраст, который он имел тогда. Ход времени останавливается по достижении скорости света.

Как насчет Е = mс2?

в начало 

в начало 

Хотя Эйнштейн не был сторонником того, чтобы его теория называлась «теорией относительности» (предлагая вместо этого термин «теория инвариантности», которое, помимо всего прочего, отражает неизменность скорости света), теперь нам понятен смысл этого термина. Работа Эйнштейна показала, что понятия пространства и времени, которые раньше казались независимыми и абсолютными, на самом деле тесно взаимосвязаны и являются относительными. Эйнштейн пошел дальше и выяснил, что и другие физические характеристики мироздания неожиданно тесно связаны между собой. Его самое знаменитое уравнение дает один из наиболее важных примеров такой связи. В этом уравнении Эйнштейн утверждает, что энергия объекта (Е) и его масса (т) не являются независимыми величинами; зная массу, мы можем определить энергию (умножив массу на квадрат скорости света, с2), а зная энергию, мы можем рассчитать массу (разделив энергию на квадрат скорости света). Иными словами, энергия и масса, подобно долларам и евро, являются конвертируемыми валютами. Однако в отличие от денег, обменный курс, равный квадрату скорости света, зафиксирован раз и навсегда. Поскольку этот обменный курс столь велик (с2 – очень большое число), то энергии, сосредоточенной в небольшой массе, может хватить надолго. Мир уже столкнулся с огромной разрушительной мощью, возникшей при превращении менее одного процента от 900 граммов урана в энергию в Хиросиме. Наступит день,когда, используя термоядерные энергетические установки, мы сможем продуктивно использовать формулу Эйнштейна для удовлетворения энергетических потребностей всего человечества с помощью неисчерпаемых запасов морской воды. С точки зрения положений, которые мы развивали в этой главе, уравнение Эйнштейна дает наиболее четкое объяснение фундаментальному факту, состоящему в том, что ничто не может двигаться со скоростью, превышающей скорость света. У вас может возникнуть вопрос, почему, например, нельзя взять какой-нибудь объект, скажем мюон, разогнать его на ускорителе до 298 000 км/с, т. е. до 99,5 % скорости света, потом «толкнуть его чуть посильнее», сообщив ему скорость в 99,9 % световой, а после этого «врезать ему по-настоящему», заставив пробить барьер световой скорости. Формула Эйнштейна объясняет, почему подобные усилия никогда не увенчаются успехом. Чем быстрее движется тело, тем выше его энергия, а, как показывает формула Эйнштейна, чем больше энергия тела, тем больше его масса. Например, мюон, двигающийся со скоростью, составляюшей 99,9 % световой, весит намного больше, чем его неподвижные собратья. В действительности он будет примерно в 22 раза тяжелее. (Массы, приведенные в табл. 1.1, относятся к частицам, находящимся в состоянии покоя.) Но чем больше масса объекта, тем труднее увеличить его скорость. Подталкивать ребенка, едущего на велосипеде, – это одно, а толкать тяжелый грузовик – совсем другое. Поэтому, чем быстрее движется мюон, тем труднее увеличить его скорость. При скорости, составляющей 99,999% скорости света, масса мюона увеличится в 224 раза; при скорости в 99,99999999 % от световой она возрастет более чем 70 000 раз. Поскольку масса мюона неограниченно возрастает при приближении его скорости к скорости света, потребуется затратить бесконечно большое количество энергии, чтобы он достиг или преодолел световой барьер. Это, конечно, невозможно, и поэтому ничто не может двигаться со скоростью, превышающей скорость света.
   Как мы увидим в следующей главе, этот вывод посеял семена второго крупного противоречия, с которым столкнулись физики в течение прошлого столетия, и которое, в конечном счете, обрекло на гибель еще одну почтенную и уважаемую теорию – ньютоновскую универсальную теорию тяготения.

Примечания

1. Присутствие массивных тел, подобных нашей Земле, усложняет картину за счет добавления гравитационных сил. Поскольку мы сфокусируем свое внимание на движении в горизонтальном, а не в вертикальном направлении, можно игнорировать присутствие Земли. В следующей главе мы подробно рассмотрим гравитацию.
   2. Если выражаться более точно, 300 000 км/с – это скорость света в вакууме. Когда свет распространяется в какой-либо среде, например в воздухе или стекле, его скорость уменьшается, подобно тому, как камень, брошенный со скалы, замедляет свое движение, войдя в воду. Поскольку замедление скорости света в среде по отношению к его скорости в вакууме не оказывает никакого влияния на рассматриваемые нами релятивистские эффекты, мы будем его в дальнейшем игнорировать.
   3. Для читателей, любящих математику, заметим, что эти наблюдения могут быть выражены в количественной форме. Например, если движущиеся световые часы имеют скорость и, а фотон совершает свое движение «туда и обратно» за t секунд
   (по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу, световые часы пройдут расстояние vt. Используя теорему Пифагора, можно рассчитать длину пути по диагонали на рис. 2.3.

   Она составит, где Л представляет собой расстояние между зеркалами световых часов (равное 15 см).


    Суммарная длина двух диагональных отрезков будет равна Поскольку скорость света является константой, которая обычно обозначается с, фотону потребуется секунд на то, чтобы пройти оба диагональных отрезка. Таким образом, у нас есть уравнение, из которого мы можем найти значение Чтобы избежать недоразумений, обозначим это значение как, индекс у t


   в этом выражении указывает на то, что мы измеряем продолжительность одного цикла для движущихся часов. С другой стороны, время цикла для неподвижных часов tнеподв можно рассчитать по формуле. Используя неслож-
   ные алгебраические преобразования, получим выражение, которое непосредственно свидетельствует о том, что продолжительность тика движущихся часов больше, чем у неподвижных. Это означает, что для промежутка времени между двумя выбранными событиями движущиеся часы совершат меньшее число тиков, чем неподвижные, т. е. для движущегося наблюдателя пройдет меньше времени.
   4. Если опыт с ускорителем частиц, понятный узкому кругу специалистов, не выглядит для вас очень убедительным, приведем еще один пример. В октябре 1971 г. Дж. С. Хафеле, работавший в то время в университете Вашингтона в Сент-Луисе и Ричард Китинг из Военно-морской лаборатории США провели эксперимент, в ходе которого цезиевые атомные часы провели около 40 часов на борту самолетов, совершавших коммерческие авиарейсы. После того, как был учтен ряд тонких эффектов, связанных с действием гравитации (которая будет обсуждаться в следующей главе), расчеты с использованием специальной теории относительности показали, что показания движущихся часов должны быть меньше показаний неподвижных часов на несколько сотен миллиардных долей секунды. Именно такие данные и получили Хафеле и Китинг: для движущихся часов время действительно замедляет ход.
   5. Хотя на рис. 2.4 правильно изображено сжатие тела в направлении движения, этот рисунок не дает представления о том, что мы в действительности
   Частица Масса* Электрический заряд" Заряд слабого взаимодействия Заряд сильного взаимодействия
   Семейство 1
   Электрон 0,00054 -1 -1/2 0
   Электронное нейтрино «!0"8 0 1/2 0
   и-кварк 0,0047 2/3 1/2 красный, зеленый, синий
   d-кварк 0,0074 -1/3 -1/2 красный, зеленый, синий
   Семейство 2
   Мюон 0,11 -1 -1/2 0
   Мюонное нейтрино «0,0003 0 1/2 0
   с-кварк 1,6 2/3 1/2 красный, зеленый, синий
   s-кварк 0,16 -1/3 -1/2 красный, зеленый, синий
   Семейство 3
   Тау-частица 1,9 -1 -1/2 0
   Тау-нейтрино «0,033 0 1/2 0
   t-кварк 189,0 2/3 1/2 красный, зеленый, синий
   b-кварк 5,2 -1/3 -1/2 красный, зеленый, синий
   * В единицах массы протона. ** В единицах заряда протона.
   увидим, если мимо нас пролетит тело, движущееся со световой скоростью (при условии, что наш глаз или фотографическое оборудование, которое мы используем, имеют достаточную разрешающую способность, чтобы вообще хоть что-то увидеть!). Чтобы увидеть что-то, глаз или камера должны получать свет, отраженный от поверхности тела. Однако, поскольку отраженный свет приходит от разных участков тела, тот свет, который мы будем видеть в каждый момент времени, будет проходить по путям различной длины. Результатом явится релятивистская иллюзия – тело будет выглядеть сократившимся по длине и повернутым.
   6. Для читателей, имеющих математическую подготовку, заметим, что по 4-вектору положения в пространстве-времени можно построить 4-вектор скорости
   где т – собственное время, определяемое соотношением
   Тогда «скорость в пространстве-времени» будет представлять собой величину 4-вектора и,
   которая равна скорости света с. Теперь уравнение
   можно переписать в форме


   Это показывает, что увеличение скорости тела в пространстве должно сопровождаться уменьшением величины, которая представляет собой скорость объекта во времени (скорость, с которой идут его собственные часы по отношению к скорости наших неподвижных часов dt).

в начало 

в начало 

назад содержание далее
Используются технологии uCoz