интеграл по поверхности \(S \), будет иметь смысл и, следовательно из нее снова будет следовать неограниченная дифференцируемость функции \(u(x) \).

Пусть \(\Omega \) — шар, описанный радиусом \(a \) из точки \(x \), и целиком лежащий в области гармоничности функции \(u \). На поверхности шара \(\Omega: \frac{d}{dn} = \frac{d}{dr} \). Положим как и выше: \(L(\xi, x) = \frac{1}{4\pi} \frac{1}{r} \). Тогда, в силу соотношения (34), формула (44) примет вид:

\[
\frac{1}{4\pi a^2} \int_{\Omega} u \, dS_\xi = u(x),
\]

т. е. среднее арифметическое значение гармонической функции на поверхности шара равно ее значению в его центре. Это утверждение носит название теоремы о среднем значении гармонической функции.

ЗАДАЧИ

1. Опираясь на формулу (46), доказать, что гармонические функции внутри области своего определения не только дифференцируемы, но и аналитичны.

2. Показать, что функция, удовлетворяющая условию (46), гармонична.

§ 6. Формула Пуассона. Решение задачи Дирихле для шара

Пусть \(\xi \) — произвольная переменная точка, \(u \) — функция, гармоническая в шаре \(\Omega \), определенном уравнением \(|\xi| \leqslant 1 \), \(x \) — точка внутри шара \(\Omega \), а \(\xi \) — точка, гармонически сопряженная с точкой \(x \) (§ 3). Введем обозначения:

\[
r_0 = |x|, \quad r = |x - \xi|, \quad r^* = |\xi - \xi|.
\]

Функции \(\frac{1}{4\pi r} \) и \(\frac{1}{4\pi r^*} \) являются фундаментальными решениями уравнения Лапласа с особыми точками соответственно внутри и вне шара \(\Omega \). Следовательно, применив основную формулу (44), получим:

\[
\frac{1}{4\pi} \int_{|\xi| = 1} \left[\frac{1}{r^*} \frac{du}{dn} - u \frac{d}{dn} \left(\frac{1}{r^*} \right) \right] dS_\xi = 0,
\]

\[
\frac{1}{4\pi} \int_{|\xi| = 1} \left[\frac{1}{r} \frac{du}{dn} - u \frac{d}{dn} \left(\frac{1}{r} \right) \right] dS_\xi = u(x).
\]

Приняв во внимание, что \(\xi_j = \frac{x_j}{r_0^2} \) (\(j = 1, 2, 3 \)) и что \(\sum_{a=1}^{3} \xi_a^2 = 1 \),
когда $\zeta \in \mathcal{F} \Omega$, для точек $\zeta \in \mathcal{F} \Omega$ получим:

$$
\begin{align*}
 r^* &= \sqrt{\sum_{\alpha=1}^{3} \left(\frac{x_\alpha}{r_0^2} - \xi_\alpha \right)^2} = \sqrt{\frac{1}{r_0^2} - 2 \sum_{\alpha=1}^{3} \frac{x_\alpha \xi_\alpha}{r_0^2} + 1 = \\
 &= \frac{1}{r_0} \sqrt{\sum_{\alpha=1}^{3} (x_\alpha - \xi_\alpha)^2} = \frac{r}{r_0},
\end{align*}
$$

или

$$
 r^* = \frac{r}{r_0}, \quad \text{когда} \quad \zeta \in \mathcal{F} \Omega.
$$

Умножив соотношение (47) на величину $-\frac{1}{r_0}$ и сложив его с соотношением (48), в силу формулы (49), получим

$$
 u(x) = \frac{1}{4\pi} \int_{|\zeta| = 1} \int u \left(\frac{1}{r_0 r^*} - \frac{1}{r} \right) dS_\zeta.
$$

Так как радиус шаровой поверхности $\mathcal{F} \Omega$ равен единице, то координаты ζ_j ($j = 1, 2, 3$) точки ζ численно равны направляющим косинусам внешней нормали к поверхности $\mathcal{F} \Omega$ в точке ζ. Поэтому

$$
 \frac{d}{dn} = \sum_{\alpha=1}^{3} \xi_\alpha \frac{\partial}{\partial \xi_\alpha}.
$$

Приняв во внимание соотношение (49), получим:

$$
\begin{align*}
 \frac{d}{dn} \left(\frac{1}{r} \right) &= \sum_{\alpha=1}^{3} \xi_\alpha \frac{\partial}{\partial \xi_\alpha} \left(\frac{1}{r} \right) = -\frac{1}{r^2} \sum_{\alpha=1}^{3} \xi_\alpha \frac{\partial r}{\partial \xi_\alpha} = \\
 &= \frac{1}{r^2} \sum_{\alpha=1}^{3} \frac{\xi_\alpha (x_\alpha - \xi_\alpha)}{r} = \frac{1}{r^3} \sum_{\alpha=1}^{3} \xi_\alpha x_\alpha - \frac{1}{r^3},
\end{align*}
$$

$$
\begin{align*}
 \frac{d}{dn} \left(\frac{1}{r^*} \right) &= \sum_{\alpha=1}^{3} \xi_\alpha \frac{\partial}{\partial \xi_\alpha} \left(\frac{1}{r^*} \right) = \frac{1}{r^*^3} \sum_{\alpha=1}^{3} \xi_\alpha \xi_\alpha - \frac{1}{r^*^3} = \\
 &= \frac{1}{r^*^3} \sum_{\alpha=1}^{3} \xi_\alpha x_\alpha - \frac{1}{r^*^3} r_0 \sum_{\alpha=1}^{3} \xi_\alpha x_\alpha - \frac{r_0^2}{r^3},
\end{align*}
$$

в силу чего

$$
\frac{d}{dn} \left(\frac{1}{r_0 r^*} - \frac{1}{r} \right) = \frac{1}{r_0} \frac{d}{dn} \left(\frac{1}{r^*} \right) - \frac{d}{dn} \left(\frac{1}{r} \right) = -\frac{r_0^2}{r^3} + \frac{1}{r^3} = \frac{1-r_0^2}{r^3}.
$$

Подставив это выражение в формулу (50), получим формулу Пуассона

$$
 u(x) = \frac{1}{4\pi} \int_{|\zeta| = 1} \int u \frac{1-r_0^2}{r^3} dS_\zeta.
$$

— 274 —
определяющую значения гармонической функции u в точках внутри шара $|x| \leqslant 1$ по значениям этой функции на его поверхности.

Подставив в формулу Пуассона вместо u произвольную непрерывную функцию $\psi(\zeta)$ точки ζ поверхности шара $|x| \leqslant 1$, получим некоторую функцию

$$u(x) = \frac{1}{4\pi} \int \int_{|\zeta| = 1} \psi \frac{1 - r_0^2}{r^3} dS_\zeta. \quad (52)$$

Покажем, что эта функция является решением задачи Дирихле:

$$\begin{align*}
\Delta u &= 0, \quad \text{когда } |x| < 1; \\
\psi &= u, \quad \text{когда } |x| = 1.
\end{align*} \quad (53)$$

Доказательство разобьем на два этапа: сначала докажем, что внутренняя форма $|x| \leqslant 1$ функция u гармонична, а затем докажем, что при $|x| \rightarrow 1$ функция $u \rightarrow \psi$.

Рассмотрим подынтегральное выражение

$$\psi \frac{1 - r_0^2}{r^3} \equiv \psi(\zeta) \frac{1 - x_1^2 - x_2^2 - x_3^2}{[(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2]^{3/2}}, \quad |\zeta| = 1. \quad (54)$$

Если точка x лежит внутри шара, оно непрерывно и ограничено, когда $|\xi| = 1$. Поэтому при $|x| < 1$ можно изменять порядок интегрирования по ζ и дифференцирования по координатам точки x. Так как подынтегральное выражение, как функция точки x, при $|x| < 1$ имеет непрерывные вторые производные и удовлетворяет уравнению Лапласа (в чем можно убедиться непосредственной подстановкой его в уравнение), то при $|x| < 1$ интеграл (52) представляет гармоническую функцию.

Докажем теперь, что на поверхности $|\zeta| = 1$ интеграл (52) принимает те же значения, что и функция ψ.

Рассмотрим некоторую конечную область, заключающую поверхность $|\zeta| = 1$ внутри себя. В этой области и на ее границе функция $u \equiv 1$ гармонична. Поэтому к ней может быть примена формула Пуассона, что даст

$$\frac{1}{4\pi} \int \int_{|\zeta| = 1} \frac{1 - r_0^2}{r^3} dS_\zeta = 1.$$

Составим разность

$$u(x) - \psi(y) = \frac{1}{4\pi} \int \int_{|\zeta| = 1} \left(\frac{1 - r_0^2}{r^3} \right) [\psi(\zeta) - \psi(y)] dS_\zeta,$$

где y — произвольная точка поверхности $|\zeta| = 1$. Выделим на поверхности Σ, определяемой уравнением $|\zeta| = 1$, небольшую часть σ, лежащую внутри шара радиуса η с центром в точке y, и рас-
смотрим интегралы

\begin{align*}
J_1 &= \frac{1}{4\pi} \int_\Sigma \int_\sigma \frac{1 - r_0^2}{r^3} [\psi(\zeta) - \psi(\eta)] dS_\zeta, \\
J_2 &= \frac{1}{4\pi} \int_\Sigma \int_\sigma \frac{1 - r_0^2}{r^3} [\psi(\zeta) - \psi(\eta)] dS_\zeta.
\end{align*}

(55)

(56)

Легко найдем, что

\begin{align*}
|J_1| &= \frac{1}{4\pi} \int_\sigma \int_\zeta \frac{1 - r_0^2}{r^3} [\psi(\zeta) - \psi(\eta)] dS_\zeta \leq \frac{M}{4\pi} \int_\sigma \int_\zeta \frac{1 - r_0^2}{r^3} dS_\zeta < \\
&< \frac{M}{4\pi} \int_\{\zeta : |\zeta| = 1\} \frac{1 - r_0^2}{r^3} dS_\zeta = M,
\end{align*}

где M — верхняя граница разности $\psi(\zeta) - \psi(\eta)$ при $\zeta \in \sigma$. В силу непрерывности функции ψ радиус η всегда можно выбрать настолько малым, чтобы было

\begin{equation}
|J_1| < \frac{\epsilon}{2},
\end{equation}

(57)

где ϵ — произвольное положительное число. Так как функция ψ непрерывна, то она ограничена на Σ. Поэтому существует такое число A, что $|\psi| < A$ при $\zeta \in \Sigma$. Вследствие этого, для интеграла J_2 получим оценку

\begin{align*}
J_2 &= \frac{1}{4\pi} \int_\Sigma \int_\sigma \frac{1 - r_0^2}{r^3} [\psi(\zeta) - \psi(\eta)] dS_\zeta \leq \frac{2A}{4\pi} \int_\Sigma \int_\sigma \frac{1 - r_0^2}{r^3} dS_\zeta \leq 2AM^*,
\end{align*}

где M^* — верхняя граница выражения $\frac{1 - r_0^2}{r^3}$ на $\Sigma - \sigma$. Каков бы ни был радиус η, точку x можно настолько приблизить к точке y, что разность $1 - r_0^2$ будет в неограниченное число раз меньше η, тогда как расстояние $r = |x - \zeta|$ при $\zeta \in \Sigma - \sigma$ будет одного порядка с η. Поэтому при любом η, взяв точку x достаточно близко к точке y, можно добиться, чтобы было

\begin{equation}
|J_2| < \frac{\epsilon}{2}.
\end{equation}

Отсюда следует, что при достаточной близости точки x к точке y

\begin{equation}
|u(x) - \psi(y)| = |J_1 + J_2| \leq |J_1| + |J_2| < \epsilon.
\end{equation}

В силу произвольности числа ϵ заключим, что когда точка x, оставаясь внутри шара $|\zeta| \leq 1$, стремится к точке y на его поверхности, то $u(x) \to \psi(y)$, что и утверждалось.

Заметим, что нам удалось построить решение внутренней задачи Дирихле для шара $|\zeta| \leq 1$ при произвольном непрерывном граничном условии. Тем самым мы доказали и существования этого решения.

— 276 —
Полученный результат путем линейного преобразования координат обобщается на задачу Дирихле, поставленную для произвольного шара.

ЗАДАЧИ

1. Опираясь на формулу Пуассона, доказать теорему о среднем значении гармонической функции (§ 5).
2. Опираясь на теорему о среднем значении, доказать теорему о максимуме и минимуме гармонической функции (§ 3).

§ 7. Функция Грина

В этом параграфе будем рассматривать решения граничных задач, принадлежащие классу функций, непрерывных в изучаемой области вместе со своими первыми производными. Это даст нам возможность широко использовать интегральные формулы (43) и (44).

Рассмотрим задачу Дирихле:

\[\Delta u = f, \quad \text{когда} \quad x \in V - \mathcal{F}V, \quad \{ \]

\[u = \psi, \quad \text{когда} \quad x \in \mathcal{F}V, \quad \} \quad (58) \]

где \(V \) — ограниченная область, а \(f \) и \(\psi \) — непрерывные функции. Предположим, что

\[G(\xi, x) = \frac{1}{4\pi} \left[\frac{1}{r} + \varphi(\xi, x) \right] \quad (r = |\xi - x|) \quad (59) \]

— фундаментальное решение уравнения Лапласа в области \(V \), обращающееся в нуль на ее границе \(\mathcal{F}V \). Для этого функция \(\varphi(\xi, x) \) должна быть решением граничной задачи:

\[\Delta \varphi(\xi, x) = 0, \quad \text{когда} \quad \xi, x \in V - \mathcal{F}V; \]

\[\varphi(\xi, x) = -\frac{1}{r}, \quad \text{когда} \quad \xi \in \mathcal{F}V, \quad x \in V - \mathcal{F}V. \quad \} \quad (60) \]

Подставив в формулу (43) значения величин, заданные в граничной задаче (58), и положив \(L(\xi, x) = G(\xi, x) \), получим

\[u(x) = -\int_{\mathcal{F}V} \psi \frac{dG}{dn} dS \xi - \int_{V} fG dV \quad (x \in V - \mathcal{F}V). \quad (61) \]

Если фундаментальное решение \(G(\xi, x) \) и его производная \(\frac{dG}{dn} \) существуют, то эта формула даст решение задачи Дирихле (58), принадлежащее рассматриваемому классу функций, в интегральной форме. Тем самым, решение задачи Дирихле (58) общего вида для неоднородного уравнения сможет быть заменено разысканием функции \(G(\xi, x) \), для чего требуется найти решение задачи Дирихле (60) частного вида для однородного уравнения. Фундамен-