2. Показать, что малые вынужденные колебания симметрично нагруженной однородной круглой мембраны радиуса \(a \) с жестко закрепленным контуром в полярной системе координат можно представить в форме ряда

\[
u (r, t) = \sum_{\gamma = 1}^{\infty} \bar{u} (\gamma, t) J_0 (\lambda_\gamma r),
\]

где \(\bar{u} (\gamma, t) \)—решение обыкновенного дифференциального уравнения

\[
\frac{1}{c^2} \frac{\partial^2 \bar{u}}{\partial t^2} + \lambda^2 \bar{u} = \frac{Z (\gamma, t)}{T}
\]

при нулевых начальных условиях, \(\lambda_\gamma \)—положительные корни уравнения

\[
J_0 (\lambda_\gamma a) = 0,
\]

перенумерованные в порядке их возрастания, а черта над символами указывает на выполнение над соответствующей величиной интегрального преобразования в пределах от 0 до \(a \) с ядром

\[
\frac{2}{a^2} \frac{1}{J_1^2 (\lambda_\gamma a)} r J_0 (\lambda_\gamma r).
\]

Величины \(Z (r, t) \) и \(T \)—соответственно давление на мембрану и ее натяжение.

§ 3. Распределение тепла в цилиндрическом стержне

Рассмотрим задачу об остывании однородного цилиндрического стержня с круговым сечением радиуса \(a \). Теплоотдачей с торцов стержня будем пренебречь, а начальное распределение температуры в любом из его сечений и условия теплоотдачи по длине стержня считать одинаковыми. При этих предположениях распределение тепла описывается в полярных координатах \(r, \varphi \) уравнением (гл. XXVIII, § 3)

\[
\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} = \frac{1}{k} \frac{\partial T}{\partial t},
\]

где \(T \)—температура стержня, а \(k \)—коэффициент температуропроводности*. Начало полярных координат предполагается лежащим на оси стержня.

Будем считать, что с поверхности стержня происходит излучение в среду с нулевой температурой. При этом граничные условия по \(r \) будут иметь вид**

\[
T \big|_{r=0} < \infty, \quad \left[\frac{\partial T}{\partial r} + hT \right]_{r=a} = 0,
\]

а по \(\varphi \), очевидно, должно соблюдаться условие периодичности:

\[
T \big|_{\varphi=0} = T \big|_{\varphi=2\pi}.
\]

* В гл. XXVIII коэффициент температуропроводности был обозначен через \(a^2 \).
** Условие при \(r=0 \) связано не с физическим содержанием задачи, а с тем, что точка \(r=0 \) является в полярной системе координат особой.
Начальное условие возьмем в форме

\[T |_{t=0} = f(r, \varphi). \]

(24)

Применим интегральные преобразования, чтобы исключить дифференциальные операции по \(\varphi \) и по \(r \).

Начнем с переменной \(\varphi \). Положим

\[\mathcal{M}_\varphi T = \frac{\partial^2 T}{\partial \varphi^2}. \]

Ядро преобразования, которое обозначим через \(\bar{K}_\varphi(\varphi) \), должно удовлетворять дифференциальному уравнению

\[\frac{\partial^2 \bar{K}}{\partial \varphi^2} + \mu^2 \bar{K} = 0 \]

(25)

и условию периодичности

\[\bar{K} |_{\varphi=0} = \bar{K} |_{\varphi=2\pi}. \]

(26)

Как мы упоминали, условные периодичности может повлечь за собой двукратное вырождение собственных чисел, т. е. каждому из них могут соответствовать две линейно независимые собственные функции. Взаимно ортогональными линейно-независимыми нормированными решениями задачи (25)—(26) являются функции

\[\frac{1}{\pi} \cos \mu \varphi \text{ и } \frac{1}{\pi} \sin \mu \varphi \text{ при } \mu = m = 0, 1, 2, \ldots. \]

Положим

\[\bar{K}_{2m-1}(\varphi) = \frac{1}{\pi} \sin m \varphi, \quad \bar{K}_{2m}(\varphi) = \frac{1}{\pi} \cos m \varphi. \]

(27)

Осуществив в интервале \(0 \leq \varphi \leq 2\pi \) преобразование с этим ядром и приняв во внимание, что значению \(\gamma = 2m \) и значению \(\gamma = 2m - 1 \) соответствует одно и то же собственное число \(m^2 \), приведем задачу (21)—(24) к виду:

\[\frac{\partial^2 \bar{T}}{\partial r^2} + \frac{1}{r} \frac{\partial \bar{T}}{\partial r} - \frac{m^2}{r^2} \bar{T} = \frac{1}{k} \frac{\partial \bar{T}}{\partial t}, \]

(28)

\[\bar{T} |_{r=0} < \infty, \quad \left[\frac{\partial \bar{T}}{\partial r} + h \bar{T} \right] |_{r=a} = 0, \]

(29)

\[\bar{T} |_{t=0} = \begin{cases} f_{2m}(r), \\ f_{2m-1}(r), \end{cases} \]

(30)

где

\[\bar{T} = \int_0^{2\pi} T(r, \varphi, t) \bar{K}_\varphi(\varphi) d\varphi, \quad f_{\gamma}(r) = \int_0^{2\pi} f(r, \varphi) \bar{K}_\varphi(\varphi) d\varphi, \quad \gamma = \begin{cases} 2m, \\ 2m - 1. \end{cases} \]

Ввиду наличия двух различных начальных условий (30) каждому значению \(m \) соответствуют два различных решения уравнения (28). Эти решения обозначим через \(\bar{T}_{2m} \) и \(\bar{T}_{2m-1} \) соответственно.
Чтобы исключить дифференциальные операции по r, положим

$$
\mathcal{M}_r \bar{T} = \frac{\partial^2 \bar{T}}{\partial r^2} + \frac{1}{r} \frac{\partial \bar{T}}{\partial r} - \frac{m^2}{r^2} \bar{T}.
$$

В этом дифференциальном выражении

$$
a_{rr} = 1, \ b_r = \frac{1}{r}, \ c = -\frac{m^2}{r^2},
$$

откуда

$$
\rho (r) \equiv e^{-\int \frac{1}{a_{rr}} \left(\frac{da_{rr}}{dr} - b_r \right) dr} = r,
$$

$$
p (r) \equiv a_{rr} \rho (r) = r,
$$

$$
q (r) \equiv c \rho (r) = \frac{m^2}{r}.
$$

Ядро преобразования $\tilde{K}_\eta (r)$ должно удовлетворять уравнению

$$
\frac{\partial}{\partial r} \left(r \frac{\partial \tilde{K}}{\partial r} \right) - \frac{m^2}{r} \tilde{K} + \lambda^2 r \tilde{K} = 0,
$$

приводящемуся путем деления на r к уравнению Бесселя

$$
\frac{\partial^2 \tilde{K}}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{K}}{\partial r} + \left(\lambda^2 - \frac{m^2}{r^2} \right) \tilde{K} = 0,
$$

и граничным условиям

$$
\tilde{K} \bigg|_{r=0} < \infty, \left[\frac{\partial \tilde{K}}{\partial r} + h \tilde{K} \right]_{r=a} = 0.
$$

Ограниченными при $r = 0$ решениями уравнения (31) являются функции Бесселя $J_m (\lambda r)$. Подставив функцию $J_m (\lambda r)$ во второе из условий (32), приходим к уравнению

$$
\lambda_{m_\eta} J'_m (\lambda_{m_\eta} a) + h J_m (\lambda_{m_\eta} a) = 0,
$$

корни которого λ_{m_η} определяют собственные числа λ_{m_η} задачи (31)—(32).

Положим $\tilde{K}_\eta (r) = \frac{1}{C_{m_\eta}} J_m (\lambda_{m_\eta} r)$, где $C_{m_\eta}^{-1}$ — нормирующий множитель. С помощью формулы (41) гл. XIII найдем, что

$$
C_{m_\eta} = \int_0^a r \left[J_m (\lambda_{m_\eta} r) \right]^2 dr = \frac{1}{2 \lambda_{m_\eta}^2} (a^2 k^2 + a^2 \lambda_{m_\eta}^2 - m^2) J_m^2 (\lambda_{m_\eta} a).
$$

Выполнив в интервале $0 \leqslant r \leqslant a$ интегральное преобразование с ядром $\frac{1}{C_{m_\eta}^{-1}} J_m (\lambda_{m_\eta} r)$ и весовой функцией $\rho = r$, приведем задачу (28)—(30) к виду:

$$
\frac{d\tilde{T}}{dt} + k \lambda_{m_\eta}^2 \tilde{T} = 0,
$$

$$
\tilde{T} \bigg|_{t=0} = \begin{cases} \tilde{f}_{2m, \eta}, \\ \tilde{f}_{2m-1, \eta}, \end{cases}
$$

— 639 —
где

\[\widetilde{T} = \frac{1}{C m_\eta} \int_0^a \overline{T} (r, m) r J_m (\lambda m_\eta r) \, dr, \]
\[f_{m_\eta} = \frac{1}{C m_\eta} \int_0^a f_\gamma (r) r J_m (\lambda m_\eta r) \, dr, \quad \gamma = \left\{ \begin{array}{c} 2m, \\ 2m - 1. \end{array} \right. \]

Решением задачи (33)—(34) является функция

\[\widetilde{T}_{\gamma \eta} = f_\gamma e^{-k_\eta^2 m_\eta t}, \quad \gamma = \left\{ \begin{array}{c} 2m, \\ 2m - 1. \end{array} \right. \]

Осуществив обратные преобразования, получим:

\[\overline{T}_\gamma (r, t) = \sum_{\eta=1}^\infty f_{\gamma \eta} J_m (\lambda m_\eta r) e^{-k_\eta^2 m_\eta t}, \quad \gamma = \left\{ \begin{array}{c} 2m, \\ 2m - 1, \end{array} \right. \]
\[T (r, \varphi, t) = \sum_{m=1}^\infty \left(\overline{T}_{2m} K_{2m} + \overline{T}_{2m-1} K_{2m-1} \right) = \sum_{m, \eta=1}^8 J_m (\lambda m_\eta r) e^{-k_\eta^2 m_\eta t} \left(f_{2m, \eta} \cos m \varphi + f_{2m-1, \eta} \sin m \varphi \right). \]

Это и есть искомое решение задачи (21)—(24) в форме двойного ряда.

ЗАДАЧИ

1. Показать, что решение рассмотренной выше задачи о распространении тепла в стержне при симметричном начальном распределении температуры \((T|_{t=0} = f (r))\) может быть представлено в форме ряда

\[T (r, t) = \sum_{\gamma=1}^\infty f_\gamma J_0 (\lambda_\gamma r) e^{-k_\gamma^2 \lambda_\gamma^2 t}, \]

где

\[f_\gamma = \frac{2 \lambda_\gamma^2}{a^2 (h^2 + \lambda_\gamma^2)} \frac{1}{J_0^2 (\lambda_\gamma a)} \int_0^a f (r) r J_0 (\lambda_\gamma r) \, dr, \]

а \(\lambda_\gamma \) — положительные корни уравнения

\[h J_0 (\lambda a) - \lambda J_1 (\lambda a) = 0, \]

перенумерованные в порядке их возрастания.

2. Показать, что если поверхность стержня поддерживается при постоянной температуре \(T = 0 \), то при сохранении остальных условий задачи 1 распределение температуры в стержне в момент времени \(t \) дается формулой

\[T (r, t) = \sum_{\gamma=1}^\infty f_\gamma J_0 (\lambda_\gamma r) e^{-k_\gamma^2 \lambda_\gamma^2 t}, \]

где

\[f_\gamma = \frac{2}{a^2} \frac{1}{J_1^2 (\lambda_\gamma a)} \int_0^a f (r) r J_0 (\lambda_\gamma r) \, dr, \]
а \(\lambda \) — положительные корни уравнения \(J_0 (\lambda a) = 0 \), перенумерованные в порядке их возрастания.

3. Путем повторного применения интегральных преобразований решить задачу о распространении тепла в прямоугольном параллелепипеде 0 \(\leq x_1 \leq a \), 0 \(\leq x_2 \leq b \), 0 \(\leq x_3 \leq c \) при начальном условии

\[
T \mid_{t=0} = f (x_1, x_2, x_3),
\]

если при \(t > 0 \) его грани поддерживаются при постоянной температуре.

Указание. Уравнение теплопроводности записать в прямоугольных декартовых координатах и последовательно исключить дифференциальные операции по \(x_1, x_2, x_3 \) аналогично тому, как это было сделано в § 2.

\[T = \frac{8}{\pi ab} \sum_{m, n, s=1}^{\infty} f_{mn} s e^{-k \mu_{mn} t} \sin \frac{\pi}{a} mx_1 \sin \frac{\pi}{b} nx_2 \sin \frac{\pi}{c} sx_3, \]

где

\[
f_{mn} s = \iint f (x_1, x_2, x_3) \sin \frac{\pi}{a} mx_1 \sin \frac{\pi}{b} nx_2 \sin \frac{\pi}{c} sx_3 dx_1 dx_2 dx_3,
\]

\[\mu_{mn} s = \pi \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{s^2}{c^2}}, \]

§ 4. Распространение тепла в круглой трубе

Рассмотрим теперь задачу о распространении тепла в круглой трубе, если распределение температуры при \(t=0 \) в ней задано, а затем, при \(t > 0 \), на ее внутренней и внешней стенках поддерживаются температура \(T = 0 \). Начальное распределение температуры будем считать неизменным по длине трубы, а теплоотдаче с ее торцов пренебречь. При этих предположениях придем к задаче

\[
\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} = \frac{1}{k} \frac{\partial T}{\partial t},
\]

(35)

\[
T \mid_{r=a} = T \mid_{r=b} = 0,
\]

(36)

\[
T \mid_{t=0} = f (r, \varphi),
\]

(37)

где \(a \) и \(b \) — внутренний и наружный радиусы трубы, а \(f (r, \varphi) \) — заданная функция.

Исключим последовательно дифференциальные операции по \(\varphi \) и по \(r \)

При исключении дифференциальных операций по \(\varphi \) мы находимся в точности при условиях задачи предыдущего параграфа. Применив в интервале \(0 \leq \varphi \leq 2\pi \) интегральное преобразование с ядром (27), приведем задачу (35)—(37) к виду

\[
\frac{\partial^2 \overline{T}}{\partial r^2} + \frac{1}{r} \frac{\partial \overline{T}}{\partial r} - \frac{m^2}{r^2} \overline{T} = \frac{1}{k} \frac{\partial \overline{T}}{\partial t},
\]

(38)

\[
\overline{T} \mid_{r=a} = \overline{T} \mid_{r=b} = 0,
\]

(39)

\[
\overline{T} \mid_{t=0} = \overline{f}_1 (r), \quad \gamma = \begin{cases} 2m, \\ 2m - 1, \end{cases}
\]

(40)