Совокупности молекул исходного вещества и продуктов реакции можно считать некоторыми квазизамкнутыми системами, находящимися в термостате и слабо взаимодействующими между собой. Последнее условие выполнено, если число атомов, реагирующих в единицу времени, мало по сравнению с полным числом молекул в системе, что всегда выполнено в макроскопической системе веществ при равновесной реакции.

Обычно приходится изучать равновесные состояния реагирующей системы при заданной температуре и давлении. Условием равновесия поэтому служит требование

$$\Phi(p, T, N_i) \rightarrow \min,$$

где N_i — число частиц данного сорта. При постоянных заданных значениях температуры и давления во всей системе условие минимума можно переписать в виде

$$d\Phi = \left(\frac{\partial \Phi}{\partial N_1} \right)_{p, T} dN_1 + \left(\frac{\partial \Phi}{\partial N_2} \right)_{p, T} dN_2 + \ldots = \sum \mu_i dN_i = 0$$

и, замечая, что изменение числа частиц данного сорта можно представить в виде

$$dN_i = v_i dN,$$

мы получаем условие равновесия в системе при наличии химических реакций:

$$\sum v_i \mu_i = 0. \quad (67,2)$$

При превращении одной молекулы первой подсистемы в одну молекулу второй подсистемы (случай, рассматривавшийся нами ранее), коэффициенты v_i очевидно, равны $v_1 = 1, v_2 = -1$. В этом случае формула (67,2) оказывается тождественной с (61,4).

Мы видим, что химические равновесия определяются равенством парциальных потенциалов. Ввиду этого парциальные потенциалы часто называют химическими потенциалами.

§ 68. Закон действующих масс

Для применения условия (67,2) к конкретным химическим равновесиям необходимо знать явный вид парциальных потенциалов. Последний известен главным образом для газов. По-этому дальнейшая теория будет относиться к химическим равновесиям в смеси газов. Парциальный потенциал газа был вычислен нами в § 60. В смеси идеальных газов каждый из газов ведет себя так, как будто бы он один занимает весь объем сосуда и имеет парциальное давление $p_i = \frac{N_i}{N} p$, где N_i — число
частиц \(i \)-го газа и \(N \) — полное число атомов всех сортов, находящихся в сосуде. Запишем \(\mu_i \) в общем виде:

\[
\mu_i = kT \ln p_i + \chi_i(T),
\]

где

\[
\chi(T) = -\frac{5}{2} kT \ln kT - kT j_1,
\]

\[
j_1 = \ln \left(\left(\frac{2\pi m}{\hbar^2} \right)^{\frac{3}{2}} \right)
\]

для одноатомного газа,

\[
\chi(T) = -\frac{7}{2} kT \ln kT - kT j_2 + kT \ln \left(1 - e^{-\frac{\hbar^2}{2m}} \right) + e_0,
\]

\[
j_2 = \ln \left(\left(\frac{2\pi m}{\hbar^2} \right)^{\frac{3}{2}} \cdot \frac{8\pi^2 I}{\gamma h^2} \right)
\]

для двухатомного газа при очень высоких температурах, когда колебания возбуждены, и

\[
\chi(T) = -\frac{7}{2} kT \ln kT - kT j_2 + e_0
\]

для двухатомного газа при не очень высоких температурах, когда колебания не возбуждены.

Рассмотрим реакцию типа

\[
v_1 g_1 + v_2 g_2 - v_3 g_3 = 0.
\]

Условие химического равновесия гласит:

\[
v_1 \mu_1 + v_2 \mu_2 - v_3 \mu_3 = 0
\]

или

\[
v_1 kT \ln p_1 + v_2 kT \ln p_2 - v_3 kT \ln p_3 = v_3 \chi_3 - v_1 \chi_1 - v_2 \chi_2.
\]

Таким образом,

\[
\frac{p_1^{v_1} p_2^{v_2}}{p_3^{v_3}} = K(T),
\]

где

\[
\ln K(T) = \frac{v_3 \chi_3 - v_1 \chi_1 - v_2 \chi_2}{kT}.
\]

Величина \(K(T) \) есть величина, зависящая только от температуры и природы реагирующих молекул, но не зависящая от начальных давлений или количеств реагирующих газов.

Формула (68.6) носит название закона действующих масс. Закон действующих масс показывает, что независимо от исходного состава реагирующей газовой смеси с течением времени в ней установится такое равновесное состояние, при котором.
парициальные давления имеют вполне определенные значения, связанные между собой формулой (68,6). Они не зависят ни от каких параметров, кроме температуры, разности нулевых энергий и химических постоянных реагирующих газов. В том случае, когда в реакции участвуют не три, а большее число газов, закон действующих масс нужно писать в виде

\[\prod \frac{(p_i')^{v_i'}}{(p_i)^{v_i}} = K(T), \]

(68,8)

gде произведение берется по всем газам, фигурирующим в реакции, а штрихи относятся к продуктам реакции.

Закон действующих масс был впервые экспериментально открыт Н. Н. Бекетовым, а теоретически, на основе статистических соображений, был выведен Гульдбергом и Вааге.

Выражение (68,8) имеет ясный статистический смысл: для того чтобы исходные продукты вступали в реакцию, необходимо, чтобы их молекулы оказались одновременно в весьма малом объеме \(v \), размер которого порядка диаметра молекул. Поскольку газы считаются идеальными и движение молекул проходит независимо друг от друга, вероятность того, что в данном объеме одновременно окажутся молекулы исходных веществ, пропорциональна количествам этих молекул в газе. Последние в свою очередь пропорциональны соответствующим парциальным давлениям. Таким образом, вероятность прямой реакции \(w_1 \) пропорциональна \(p_1^{v_1} p_2^{v_2} \ldots \),

\[w_1 = a p_1^{v_1} p_2^{v_2} \ldots \]

Те же самые рассуждения можно применить и к обратной реакции. Вероятность обратной реакции \(w_2 \) равна

\[w_2 = b (p_1')^{v_1'} (p_2')^{v_2'}. \]

В состоянии равновесия скорости прямой и обратной реакции равны между собой. Для этого должны быть равны вероятности прямого и обратного процессов. Приравнивая \(w_1 \) и \(w_2 \) и обозначая отношение коэффициентов пропорциональности \(a/b \) через \(K \), приходим к формуле (68,8).

Закон действующих масс представляет основной закон химических равновесий. Он может быть выведен чисто термодинамическим путем, но при этом значение константы \(K(T) \) остается неопределенным и должно находиться на опыте. С помощью статистических выражений для \(u_i \), приведенных выше, постоянная \(K \) может быть вычислена теоретически Пример подобного вычисления мы дадим несколько позднее.
Закон действующих масс чаще всего выражают не через парциальные давления, а через так называемые молярные доли:

\[c_i = \frac{\rho_i}{\rho}. \]

Подставляя \(c_i \) в (68,6), получаем

\[\frac{e_1^{v_1} e_2^{v_2}}{e_3^{v_3}} = p^{-\Sigma v_i} K(T). \quad (68,9) \]

Из формулы (68,9) следует, что если реакция происходит без изменения числа молей, так что \(v_3 = v_1 + v_2 \), равновесие не зависит от общего давления в системе \(p \). Примером таких реакций может служить реакция диссоциации йодистого водорода:

\[-2\text{HJ} + \text{H}_2 + \text{J}_2 = 0,\]

для которой \(v_1 = 1, v_2 = 1, v_3 = -2 \).

Если реакция происходит с изменением числа молей, так что \(v_3 \neq (v_1 + v_2) \), то изменение общего давления сдвигает равновесие. Это значит, что при изменении общего давления отношение между молярными долями исходного вещества и продукта реакции изменяется. Пусть, например, происходит диссоциация молекулы двуокиси азота \(\text{N}_2\text{O}_4 \) на две молекулы \(\text{NO}_2 \). Записываем реакцию в виде

\[2\text{NO}_2 - \text{N}_2\text{O}_4 = 0. \]

Коэффициентами реакции будут \(v_{\text{NO}_2} = 2, v_{\text{N}_2\text{O}_4} = -1 \), так что реакция идет с увеличением числа молей. Закон действующих масс гласит:

\[\frac{e_2^{2\text{NO}_2}}{e_4^{\text{N}_2\text{O}_4}} = p^{-1} K(T). \]

При уменьшении общего давления число молекул \(\text{NO}_2 \) увеличивается, т. е. увеличивается процент распавшихся молекул \(\text{N}_2\text{O}_4 \) в равновесной смеси. Таким образом, если реакция идет с увеличением числа молей, \(|v_3| > v_1 + v_2 \), то понижение общего давления ей благоприятствует, а повышение давления — препятствует. В случае реакций, идущих с уменьшением числа молей, \(|v_3| < v_1 + v_2 \), изменение общего давления действует в обратном направлении.

§ 69. Тепловая диссоциация атомов

Мы упоминали ранее о происходящей при очень высоких температурах тепловой диссоциации атомов. Когда температура достигает таких высоких значений, что тепловая энергия \(kT \) оказывается сравнимой с энергией, которую нужно затратить-