Приложение II

Интеграл Фурье

Всякая периодическая в области $t = \frac{2\pi}{\omega}$ функция, т. е. функция, удовлетворяющая условию

$$f(t + \frac{2\pi}{\omega}) = f(t),$$

может быть разложена в ряд Фурье:

$$f(t) = \sum_{n=-\infty}^{\infty} (a_n \cos \omega t + b_n \sin n\omega t) = \sum_{n=-\infty}^{\infty} f_n e^{in\omega t}.$$

Коэффициенты Фурье даются формулой

$$f_n(\omega) = \frac{\omega}{2\pi} \int_{-\frac{n\pi}{\omega}}^{\frac{n\pi}{\omega}} e^{-in\omega t} f(t) dt.$$

Разложение в ряд Фурье означает, что произвольная периодическая функция с периодом $\frac{2\pi}{\omega}$ может быть представлена в виде наложения (спектра) бесконечного числа монохроматических функций с периодами $\frac{2\pi}{\omega}, \frac{2\pi}{2\omega}, \ldots, \frac{2\pi}{n\omega}$ или частотами: $\omega, 2\omega, \ldots, n\omega$ и т. д.

Условия, при которых возможно разложение в ряд Фурье, обычно выполняются в физических приложениях.

Переходя к пределу, когда период неограниченно возрастает, (т. е. $\omega \to 0$), а частоты сближаются между собой, можно получить разложение в интеграл Фурье:

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega.$$ (II, 1)

57*
Функция $F(\omega)$, именуемая компонентой Фурье от функции $f(t)$, дается формулой

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt. \quad (II, 2)$$

Разложение в интеграл Фурье возможно, если свойства $f(t)$ обеспечивают сходимость $(II, 1) - (II, 2)$. Обычно в физических приложениях $f(t)$ стремится к нулю при $t \to \pm \infty$, что обеспечивает сходимость этих выражений.

Интеграл Фурье можно записать в более симметричном виде:

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega t} F(\omega) d\omega, \quad (II, 3)$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt. \quad (II, 4)$$

Если $f(t)$ — вещественная функция, то $F(\omega)$ — комплексная функция, причем

$$F^*(\omega) = F(-\omega). \quad (II, 5)$$

Формулы $(II, 3)$ и $(II, 4)$ можно объединить в виде выражения

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} d\omega \int_{-\infty}^{\infty} d\tau e^{-i\omega \tau} f(\tau), \quad (II, 6)$$

также называемого часто интегралом Фурье.

Формула $(II, 3)$ показывает, что $f(t)$ представляет собой сумму монохроматических слагающихся $e^{i\omega t}$, которые берутся с весами (амплитудами) $\frac{F(\omega)}{\sqrt{2\pi}}$.

Комплексную амплитуду $F(\omega)$ можно написать в виде

$$F(\omega) = A(\omega)e^{i\varphi(\omega)}, \quad (II, 7)$$

где $A(\omega)$ — модуль и $\varphi(\omega)$ — фаза функции $F(\omega)$, являющиеся вещественными функциями частоты ω. В таком представлении для интеграла Фурье имеем

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(\omega)e^{i(\omega t + \varphi(\omega))} d\omega. \quad (II, 8)$$
Докажем важное равенство, иногда именуемое соотношением Парсеваля для интеграла Фурье:

$$\int_{-\infty}^{\infty} (f(t))^2 \, dt = \int_{-\infty}^{\infty} |F(\omega)|^2 \, d\omega. \quad (11, 9)$$

Действительно,

$$\int_{-\infty}^{\infty} (f(t))^2 \, dt \leq \frac{1}{V^{2\pi}} \int_{-\infty}^{\infty} f(t) \left\{ \int_{-\infty}^{\infty} A(\omega) e^{i(\omega t + \Phi(\omega))} \, d\omega \right\} \, dt =$$

$$= \frac{1}{V^{2\pi}} \int_{-\infty}^{\infty} A(\omega) e^{i\Phi(\omega)} \left\{ \int_{-\infty}^{\infty} f(t) e^{i\omega t} \, dt \right\} \, d\omega.$$

Но, по определению (11, 4),

$$\frac{1}{V^{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} \, dt = F^*(\omega) = A(\omega) e^{-i\Phi(\omega)}.$$

Потому

$$\int_{-\infty}^{\infty} (f(t))^2 \, dt = \int_{-\infty}^{\infty} (A(\omega))^2 \, d\omega = \int_{-\infty}^{\infty} |F(\omega)|^2 \, d\omega,$$

что и требовалось доказать.