Анри Пуанкаре. Наука и метод. Введение. Каталог сайтов Arahus.com
содержание далее

Наука и метод

ВВЕДЕНИЕ

В настоящей работе я собрал различные этюды, более или менее непосредственно относящиеся к вопросам научной методологии. Научный метод заключается в наблюдении и в экспериментировании. Если бы ученый располагал бесконечным запасом времени, то оставалось бы только сказать ему: "Смотри и смотри хорошо!" Но так как время не позволяет обозреть все, а в особенности все обозреть хорошо,- с другой же стороны, лучше вовсе не смотреть, чем смотреть плохо,- то ученый вынужден делать выбор. Первый вопрос заключается, следовательно, в том, как он должен производить свой выбор. Этот вопрос равно возникает перед физиком, как и перед историком; с ним приходится считаться и математику, и принципы, которыми должны руководствоваться вы и другие ученые, не лишены аналогии. Ученый обыкновенно следует здесь инстинкту; но, вдумываясь в эти принципы, можно предвидеть, каково должно быть будущее математики.

Мы еще лучше отдадим себе в этом отчет, если будем наблюдать ученого в его творческой деятельности; прежде всего необходимо знать психологический механизм творчества и, в частности, математического творчества. Наблюдения над процессом работы математика особенно поучительны для психолога.

Во всех опытных науках необходимо считаться с ошибками, обусловливаемыми несовершенством наших чувств и наших инструментов. К счастью, можно допустить, что при некоторых условиях эти ошибки часто компенсируются, так что в средних результатах они вовсе исчезают; эта компенсация обусловливается случайностью. Но что такое случайность? Это понятие не только трудно установить точно, его вообще трудно определить; и при всем том то, что я сейчас сказал относительно ошибок наблюдения, показывает, что ученый не может обойтись без этого понятия. Нужно, следовательно, дать по возможности точное определение этого понятия, столь же необходимого, как и неуловимого.

Все это суть общие соображения, которые в целом применяются во всех науках; механизм математического творчества, например, не отличается существенно от механизма какого бы то ни было иного творчества. Я обращаюсь затем к вопросам, которые носят более частный характер и находят себе применение в некоторых специальных науках и прежде всего в чистой математике.

В главах, посвященных чистой математике, мне приходится говорить о предмете очень абстрактном. Мне приходится прежде всего говорить о пространстве. Все знают, что пространство относительно, вернее, все это говорят; а между тем множество людей фактически в своем мышлении принимают его за нечто абсолютное. Достаточно немного поразмыслить, чтобы сообразить, к каким противоречиям эти люди должны приходить.

Вопросы преподавания важны прежде всего сами по себе, а затем и по другим причинам: размышлять о том, каким образом лучше всего внедрить новые понятия в девственный ум ребенка,- значит в то же время размышлять о том, каким образом эти понятия были приобретены нашими предками; значит, следовательно, размышлять об их истинном происхождении, а это, по существу, значит размышлять об их истинной природе. Почему дети обыкновенно ничего не понимают в тех определениях, которые удовлетворяют ученого? Почему им необходимо давать другие определения? Именно этот вопрос я ставлю себе в следующей главе; решение его мог до бы, на мой взгляд, навести на весьма плодотворные размышления философов, которые занимаются логикой науки.

С другой стороны, многие геометры полагают, что математику можно свести к правилам формальной логики. В этом направлении были сделаны неимоверные усилия; чтобы достигнуть этой цели, не останавливались, например, даже перед тем, чтобы опрокинуть весь порядок исторического развития наших представлений, чтобы определить конечное через бесконечное. Я полагаю, что мне удалось показать всякому непредубежденному читателю, что это лишь обманчивая иллюзия. Я надеюсь, что читатель поймет всю важность вопроса и не поставит мне в вину той страстности, с которой написаны относящиеся к этому страницы.

Последние главы, относящиеся к астрономии и механике, легче по содержанию.

Механика переживает, по-видимому, момент полного переворота. Понятия, которые казались установленными наиболее прочно, были разбиты дерзкими новаторами. Конечно, было бы поспешно признать их уже правыми только потому, что они являются новаторами. Но интересно познакомить читателей с их учением, что я и пытался сделать. По возможности, я держался исторической последовательности: новые идеи показались бы слишком странными, если не видеть, откуда они зародились.

Астрономия развертывает перед нами гигантские картины и подымает грандиозные вопросы. Нечего и думать о том, чтобы подвергнуть их непосредственно экспериментальному изучению; наши лаборатории слишком малы для этого. Но аналогии с явлениями, доступными экспериментальному исследованию, могут тем не менее служить для астронома путеводной нитью. Так, например, Млечный путь представляет собой скопление солнц, движение которых представляется на первый взгляд совершенно капризным. Но нельзя ли сравнить это огромное скопление с молекулами газа, свойства которых развивает кинетическая теория газов? Таким образом, методы физиков могут косвенным путем прийти на помощь астроному.

Наконец, я хотел в немногих чертах набросать историю развития французской геодезии.

Я показал, ценою каких настойчивых усилий, ценою каких опасностей геодезисты снабдили нас теми немногими сведениями, которыми мы владеем относительно формы Земли. Есть ли это вопрос метода? Да, без сомнения, ибо эта история учит нас, какими предосторожностями должно быть обставлено серьезное научное предприятие, сколько необходимо времени и труда, чтобы установить лишний десятичный знак.


содержание далее
Используются технологии uCoz