Каталог сайтов Arahus.com
назад содержание далее

Книга I. УЧЕНЫЙ И НАУКА

Глава II. БУДУЩЕЕ МАТЕМАТИКИ

Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук.

Но разве такой прием исследования не является для нас, математиков, некоторым образом профессиональным? Ведь мы привыкли экстраполировать, т. е. выводить будущее из прошедшего и настоящего; а так как ценность этого приема нам хорошо известна, то мы и не рискуем впасть в заблуждение относительно надежности тех результатов, которые мы получим с его помошью.

В свое время не было недостатка в прорицателях несчастья. Они охотно повторяли, что все проблемы, допускающие решение, уже были разрешены и что следующим поколениям придется довольствоваться кое-какими не замеченными ранее мелочами. К счастью, пример прошлого нас успокаивает. Уже не раз математики полагали, что все проблемы ими разрешены или, по крайней мере, что ими установлен перечень задач, которые допускают решение. Но вслед за тем смысл самого слова «решение» расширялся, проблемы, считавшиеся неразрешимыми, становились наиболее интересными; уму представлялись новые задачи, о которых раньше никто и не думал. Для греков хорошим решением было такое, которое выполняется только линейкой и циркулем; потом хорошим стали считать решение в том случае, если оно получается с помощью извлечения корней; наконец, ограничились требованием употреблять для решения исключительно алгебраические или логарифмические функции. Таким образом, предсказания пессимистов ни разу не сбылись, они вынуждены были делать уступку за уступкой, так что в настоящее время, я полагаю, их больше нет.

Но если их уже нет, то я не собираюсь с ними сражаться. Мы все уверены, что развитие математики будет продолжаться; весь вопрос в том, в каком именно направлении. Мне могут ответить: «во всех направлениях», — и это будет отчасти справедливо; но если бы это было верно вполне, то это нас несколько устрашило бы. Быстро возрастая, наши богатства вскоре образовали бы нечто столь громоздкое, что мы оказались бы перед этой непостижим ой грудой не в лучшем положении, чем были раньше перед неизвестной нам истиной.

Историку и даже физику приходится делать выбор между фактами; мозг ученого — этот маленький уголок вселенной — никогда не сумеет вместить в себя весь мир целиком; поэтому среди бесчисленных фактов, которыми нас засыпает природа, необходимо будут такие, которые мы оставим в стороне, и будут другие, которые мы сохраним. То же самое, a fortiori, имеет место и в математике: математик тоже не в состоянии воспринять все факты, которые в беспорядке представляются его уму, тем более, что здесь ведь он сам — я хочу сказать, его прихоть — создает эти факты. Ведь это он строит новую комбинацию из отдельных ее частей, сближая между собой их элементы; лишь в редких случаях природа приносит ему вполне готовые комбинации.

Бывают, конечно, и такие случаи, когда математик берется за ту или иную проблему, желая удовлетворить тем или иным требованиям физики; случается, что физик или инженер предлагают математику вычислить какое-нибудь число, которое им нужно знать для того или иного применения. Следует ли отсюда, что все мы, математики, должны ограничиться выжиданием таких требований и, вместо того чтобы свободно культивировать удовольствия, не иметь другой заботы, как применяться ко вкусам нашей клиентуры? Не должны ли математики, имея единственной целью приходить на помощь испытателям природы, только от последних ждать распоряжений? Можно ли оправдать такой взгляд? Конечно, нет! Если бы мы не культивировали точных наук ради них самих, то мы не создали бы математического орудия исследования, и в тот день, когда от физика пришел бы требовательный приказ, мы оказались бы безоружными.

Ведь физики приступают к изучению того или другого явления не потому, что какая- нибудь неотложная потребность материальной жизни сделала это изучение необходимым, и они правы. Если бы ученые XVIII столетия забросили электричество по той причине, что оно в их глазах было только курьезом, лишенным всякого практического интереса, то мы не имели бы в XX столетии ни телеграфа, ни электрохимии, ни электротехники. Будучи вынуждены сделать выбор, физики, таким образом, не руководствуются при этом единственно вопросом полезности. Как же именно поступают они, выбирая среди фактов природы? Нам нетрудно ответить на этот вопрос; их интересуют именно те факты, которые могут привести к открытию нового закона; другими словами, те факты, которые сходны с множеством других фактов, те, которые представляются нам не изолированными, а как бы тесно связанными в одно целое с другими фактами. Отдельный факт бросается в глаза всем — и невежде и ученому. Но только истинный физик способен подметить ту связь, которая объединяет вместе многие факты глубокой, но скрытой аналогией. Анекдот о яблоке Ньютона знаменателен, хотя он, вероятно, и не соответствует истине; будем поэтому говорить о нем как о действительном факте. Но ведь и до Ньютона, надо полагать, немало людей видели, как падают яблоки; а между тем никто не сумел сделать отсюда никакого вывода. Факты остались бы бесплодными, не будь умов, способных делать между ними выбор, отличать те из них, за которыми скрывается нечто, и распознавать это нечто, умов, которые под грубой оболочкой факта чувствуют, так сказать, его душу.

Буквально то же самое проделываем мы и в математике. Из различных элементов, которыми мы располагаем, мы можем создать миллионы разнообразных комбинаций; но какая-нибудь одна такая комбинация, сама по себе, абсолютно лишена значения; нам могло стоить большого труда создать ее, но это ничему не служит, разве что может быть предложено в качестве школьного упражнения. Другое будет дело, когда эта комбинация займет место в ряду аналогичных ей комбинаций, и когда мы подметим эту аналогию, перед нами будет уже не факт, а закон. И в этот день истинным творцом-изобретателем окажется не тот рядовой работник, который старательно построил некоторые из этих комбинаций, а тот, кто обнаружил между ними родственную связь. Первый видел один лишь голый факт, и только второй познал душу факта. Часто для обнаружения этого родства бывает достаточно изобрести одно новое слово, и это слово становится творцом; история науки может доставить нам множество знакомых вам примеров.

Знаменитый венский философ Мах сказал, что роль науки состоит в создании экономии мысли (1), подобно тому как машина создает экономию силы. И это весьма справедливо. Дикарь считает с помощью своих пальцев или собирая камешки. Обучая детей таблице умножения, мы избавляем их на будущее от бесчисленных манипуляций с камешками. Кто-то как-то узнал, с помощью ли камней или как-либо иначе, что 6 раз 7 составляет 42; ему пришла идея отметить этот результат, и вот благодаря этому мы не имеем больше надобности повторять вычисление сначала. Этот человек не потерял понапрасну своего времени даже в том случае, если он вычислял единственно ради собственного удовольствия; его манипуляция отняла у него не более двух минут, а между тем потребовалось бы целых два миллиарда минут, если бы миллиард людей должен был после него повторять ту же манипуляцию.

Итак, важность какого-нибудь факта измеряется его продуктивностью, т. е. тем количеством мысли, какое он позволяет нам сберечь.

В физике фактами большой продуктивности являются те, которые входят в очень общий закон, ибо благодаря этому они позволяют предвидеть весьма большое количество других фактов; то же мы видим и в математике. Я занялся сложным вычислением и, наконец, после большого труда пришел к некоторому результату; я не был бы вознагражден за свой труд, если бы благодаря .полученному результату я не оказался в состоянии предвидеть результаты других подобных вычислений и уверенно направлять их, избегая тех блужданий ощупью, на которые я должен был обречь себя в первый раз. И наоборот, мое время не было бы потеряно, если бы эти самые блуждания привели меня к открытию глубокой аналогии изучаемой мною проблемы с гораздо более обширным классом других проблем; если бы благодаря этим блужданиям я узрел одновременно сходства и различия, словом, если бы они обнаружили передо мной возможность некоторого обобщения. Я приобрел бы тогда не новый факт, а новую силу. Простым примером, который раньше других приходит на ум, является алгебраическая формула, которая дает нам решение всех численных задач определенного типа, так что достаточно лишь заменить буквы числами. Благодаря такой формуле алгебраическое вычисление, однажды выполненное, избавляет нас от необходимости повторять без конца все новые и новые численные выкладки. Но это уже очень грубый пример; всем известно, что существуют такие аналогии, которые невозможно выразить какой-либо формулой, а между тем они-то и являются наиболее ценными.

Новый результат мы ценим в том случае, если, связывая воедино элементы давно известные, но до тех пор рассеянные и казавшиеся чуждыми друг другу, он внезапно вводит порядок там, где до тех пор царил, по-видимому, хаос. Такой результат позволяет нам видеть одновременно каждый из этих элементов и место, занимаемое им в общем комплексе. Этот новый факт имеет цену не только сам по себе, но он — и только он один — придает сверх того значение всем старым фактам, связанным им в одно целое. Наш ум так же немощен, как и наши чувства; он растерялся бы среди сложности мира, если бы эта сложность не имела своей гармонии: подобно близорукому человеку, он видел бы одни лишь детали и должен был бы забывать каждую из них, прежде чем перейти к изучению следующей, ибо он не был бы в состоянии охватить разом всю совокупность частностей. Только те факты достойны нашего внимания, которые вводят порядок в этот хаос и делают его, таким образом, доступным нашему восприятию. Математики приписывают большое значение изяществу своих методов и результатов, и это не просто дилетантизм. Что, в самом деле, вызывает в нас чувство изящного в каком-нибудь решении или доказательстве? Гармония отдельных частей, их симметрия, их счастливое равновесие,— одним словом, все то, что вносит туда порядок, все то, что сообщает этим частям единство, то, что позволяет нам ясно их различать и понимать целое в одно время с деталями. Но ведь именно эти же свойства сообщают решению большую продуктивность; действительно, чем яснее мы будем видеть этот комплекс в его целом, чем лучше будем уметь обозревать его одним взглядом, тем лучше мы будем различать его аналогии с другими, смежными объектами, тем скорее мы сможем рассчитывать на открытие возможных обобщений. Впечатление изящного может быть вызвано неожиданностью сближения таких вещей, которые мы не привыкли сближать; и в этом случае изящность плодотворна, ибо благодаря ей обнажаются родственные отношения, которых мы не замечали до тех пор; она плодотворна и в том случае, если она обусловливается единственно контрастом между простотой средств и сложностью проблемы; она заставляет нас в этом случае задуматься о причине такого контраста и чаще всего позволяет нам увидеть, что причина не случайна, а таится в том или ином законе, которого мы не подозревали раньше. Одним словам, чувство изящного в матема- тике есть чувство удовлетворения, не скажу, какое именно, но обязанное какому-то взаимному приспособлению между только что найденным решением и потребностями нашего ума; в силу такого именно приспособления найденное решение может служить орудием в наших руках (2). Следовательно, такое эстетическое удовлетворение находится в связи с экономией мышления. Подобно этому, например, кариатиды Эрехтейона (3) кажутся нам изящными по той причине, что они ловко и, гак сказать, весело поддерживают громадную тяжесть и вызывают в нас чувство экономии силы.

По той же причине, когда мы с помощью довольно длинных выкладок приходим к какому-нибудь поразительному по своей простоте результату, мы до тех пор не чувствуем себя удовлетворенными, пока не покажем, что мы могли бы предвидеть, если не весь результат в целом, то по крайней мере его наиболее характерные черты. Чем же это объясняется? Что мешает нам удовольствоваться вычислением, раз оно, по-видимому, дало нам все, что мы хотели знать? Объясняется это тем, что в новом аналогичном случае прежнее длинное вычисление не могло бы помочь нам; иначе обстоит дело с рассуждением, наполовину интуитивным, которое позволило бы нам предвидеть результат наперед. Несложность такого рассуждения позволяет одним взглядом охватить все его части, благодаря чему непосредственно бросается в глаза то, что следует в нем изменить для приспособления его ко всем могущим представиться проблемам того же рода. Позволяя, кроме того, предвидеть, насколько просто будет решение этих проблем, такое рассуждение показывает по крайней мере, стоит ли браться за подробное вычисление.

Только что сказанного достаточно, чтобы показать, насколько было бы тщетно пытаться заменить свободную инициативу математика каким-нибудь механическим приемом.

Для получения действительно ценного результата недостаточно нагромоздить кучу выкладок или иметь машину для приведения всего в порядок; имеет значение не порядок вообще, а порядок неожиданный. Машина может сколько угодно кромсать сырой фактический материал, но то, что мы назвали душой факта, всегда будет ускользать от нее.

Начиная с середины истекшего столетия, математики все больше и больше стремятся к достижению абсолютной строгости, и в этом они вполне правы. Это стремление выступает все ярче и ярче. В математике строгость еще не составляет всего, но где ее нет, там нет ничего; нестрогое доказательство — это ничто! Думаю, что с этим никто спорить не станет. Но если толковать эту истину слишком буквально, то окажется, что, например, до 1820 г. не было вовсе математики — утверждение, несомненно, преувеличенное; математики того времени охотно подразумевали то, что мы излагаем в пространных рассуждениях. Это не значит, что они вовсе не замечали этого, но они проходили мимо слишком поспешно; а чтобы хорошо разглядеть проблему, надо было бы взять на себя труд хотя бы высказать ее.

Но есть ли необходимость каждый раз подробно останавливаться на этой точности? Те, которые первые выдвинули требование строгой точности на первый план, дали нам образцы рассуждений, которым мы можем стараться подражать; но если будущие доказательства нужно будет всегда строить по этим образцам, то математические трактаты станут чересчур уж длинными; если я боюсь слишком длинных рассуждений, то не из одного только страха перед переполнением библиотек, а главным образом потому, что наши доказательства, все более удлиняясь, потеряют ту внешнюю видимую гармонию, о полезной роли которой я только что говорил.

Надо иметь в виду экономию мысли; недостаточно только дать образцы для подражания. Надобно, чтобы после нас смогли обойтись без этих образцов, и вместо повторения однажды построенного рассуждения могли бы резюмировать его в нескольких строках. В этом отношении уже сделаны кое-какие успехи. Был, например, некоторый тип сходных между собой рассуждений; они встречались повсюду; они были абсолютно строги, но страдали растянутостью. И вот в один прекрасный день придуман был новый термин «равномерная сходимость», и уже одно это выражение сделало все прежние рассуждения бесполезными; не было больше необходимости повторять их, так как они подразумевались под этим термином. Творцы таких решительных и быстрых приемов преодоления трудностей могут оказать нам двоякую услугу: во-первых, мы учимся поступать в случае надобности подобно им, а во-вторых,— и это наиболее важно — их пример и результаты позволяют нам, и очень часто, не проделывать того, что пришлось делать им, ничем, однако, не жертвуя по отношению к строгости.

Только что мы видели пример того значения, какое в математике имеют слова и выражения; я мог бы привести еще много других примеров. Трудно поверить, какую огромную экономию мысли — как выражается Мах — может осуществить одно хорошо подобранное слово. Я, кажется, уже высказал как-то ту мысль, что математика — это искусство давать одно и то же название различным вещам. Объяснимся подробнее. Надо, чтобы эти вещи, различные по своему содержанию, были сходны по форме, надо, чтобы они, так сказать, могли войти в одну и ту же форму для отливки. Когда названия хорошо подобраны, вдруг с удивлением замечаешь, что все доказательства, проведенные для одного какого-нибудь предмета, непосредственно могут быть приложены к множеству новых предметов, причем не приходится даже ничего в них изменять, даже отдельных слов, ибо названия остались те же.

Очень часто бывает достаточно одного удачно подобранного слова, чтобы устранить те исключения, которые содержались в правилах, выраженных на старом языке. С этой именно целью придуманы были отрицательные и мнимые количества, точки в бесконечности и т. д. А ведь исключения вредны, ибо они заменяют законы.

Итак, одним из характерных признаков, отличающих факты большой продуктивности, является их свойство допускать эти счастливые нововведения в языке. Сам по себе голый факт часто бывает лишен особенного значения; его можно не раз отмечать, не оказывая этим науке сколько-нибудь значительной услуги; свое значение он приобретает лишь с того дня, когда более проницательный мыслитель подметит сходство, которое он извлекает на свет и символически обозначает тем или другим термином.

У физиков мы встречаемся с совершенно таким же приемом. Они, например, придумали слово энергия, и это слово оказалось удивительно плодотворным. Изгнав исключения, оно тоже создало закон; оно дало также одно название вещам, различным по содержанию, но сходным по форме.

Из слов, имевших наиболее счастливое влияние, я отмечу названия «группа» и «инвариант». Эти слова позволили нам проникнуть в сущность многих математических рассуждений. Они нам показали, как часто древние математики рассматривали группы, сами того не замечая, как они, считая себя отдаленными друг от друга целой пропастью, вдруг сходились вместе, не понимая, как это могло случиться. Теперь мы сказали бы, что они рассматривали так называемые «изоморфные группы». Мы теперь знаем, что в группе нас мало интересует содержание, материал, что одна только форма имеет значение и что когда одна группа хорошо изучена, тем самым становятся известными все группы, с нею изоморфные. Благодаря этим словам — группа, изоморфизм,— резюмирующим в нескольких слогах этот трудно уловимый закон и делающим его сразу для всех знакомым, переход от одной группы к другой, с нею изоморфной, оказывается непосредственным и совершается с большой экономией в работе мысли. С другой стороны, идея группы тесно примыкает к идее преобразования. Почему же приписывают такое громадное значение открытию нового преобразования? Да потому, что из одной какой-нибудь теоремы это преобразование позволяет вывести десятки других теорем; оно имеет такое же значение, как нуль, приставленный справа к целому числу.

Вот чем до сих пор обусловливалось направление, в котором развивалась математика; этим же оно, несомненно, будет определяться и в будущем. Но равным образом имеет значение и природа тех проблем, которые требуют своего разрешения. Мы не должны забывать, что должно быть нашей целью; мне она представляется двоякой. Ведь наша наука одновременно граничит и с физикой и с философией; для этих двух наших соседок мы и работаем. Соответственно этому мы всегда видели и будем видеть, что математики движутся в двух прямо противоположных направлениях.

С одной стороны, математике приходится размышлять о себе самой, а это полезно, так как, размышляя о себе, она тем самым размышляет о человеческом уме, создавшем ее, тем более что среди всех, своих творений он, создал математику с наименьшими заимствованиями извне. Вот чем. полезны некоторые математические исследования, каковы, например, .исследования о постулатах, о воображаемых геометриях, о функциях со странным ходом. Чем более эти размышления уклоняются от наиболее общепринятых представлений, а следовательно, и от природы и прикладных вопросов, тем яснее они показывают нам, на что способен человеческий ум, когда он постепенно освобождается от тирании внешнего мира, тем лучше мы ум познаем в его внутренней сущности.

Но все же главные силы нашей армии приходится направлять в сторону противоположную, в сторону изучения природы.

Здесь мы встречаемся с физиком или инженером, которые говорят нам: «будьте любезны, проинтегрировать такое-то дифференциальное уравнение; через неделю мне понадобится решение ввиду такого-то сооружения, которое должно быть закончено к такому-то сроку».— «Но это уравнение,.— отвечаем мы,— не входит ни в один тип интегрируемых уравнений; последних, как вам известно, весьма немyого».— «Да, это мне известно, но какой тогда в вас толк?» В большинстве случаев бывает достаточно понять друг друга; в.самом деле, инженер не имеет нужды в интеграле конечной формы; ему надо лишь знать общий ход интегральной функции или попросту ему нужно определенное, числовое значение, которое без труда, можно было бы найти, если бы. интеграл уравнений был известен. Обыкновенно, хотя последний и неизвестен, но можно вычислить, и не зная его, требуемое числовое значение, если только точно известно, какое именно значение нужно инженеру и с какой степенью точности.

В былое время уравнение считалось решенным лишь в том случае, если рашение выражалось с помощью конечного числа известных функций; но, это едва ли возможно даже в одном случае нз ста. Однако мы всегда можем или, вернее, должны стремиться разрешить проблему, так сказать, качественно, т. е, должны стараться уанать общий вид кривой, изображающей неизвестную функцию.

Затем остается найти количественное решение задачи; если неизвестное нельзя определить с помощью конечного вычисления, то его всегда можно представать при помощи бесконечного сходящегося ряда, который и позволит его вычислить. Но можно ли это считать настоящим решением? Рассказывают, что Ньютон сообщил Лейбницу приблизительно такую анаграмму: aaaaabbb eeeeii и т.д. Лейбниц, разумеется, ничего вней не понял. Но нам теперь известен ключ, н мы знаем, что зта анаграмма в переводе на современный язык гласит: «я умею интегрировать все дифференциальные уравнения». Казалось бы, что либо Ньютону сильно повезло, либо он странным образом обманулся. Но в действительности он попросту хотел сказать, что он умеет образовывать .(по способу неопределенных коэффициентов) степенной ряд, формально удовлетворяющий предложенному уравнению.

Но нас подобное решение не удовлетворило бы, и вот почему: во-первых, такой ряд сходится очень медленно.; во-вторых, члены его следуют друг за другом без всякого закона. Напротив, ряд Q, например,.не оставляет желать ничего лучшего как потому, что.он сходится очень быстро (это важно для практика, желающего получить нужное ему иисло как можно скорее), так и потому, что мы можем подметить с первого взгляда закон образования членов этого ряда {это служит для удовлетворения эстетических потребностей теоретика).

Но в таком случае нет более проблем решенных и проблем нерешенных; есть только проблемы более или менее решенные, смотря по быстроте сходимости ряда, являющегося их решением, или по большей или меньшей гармоничности закона, управляющего образованием членов этих рядов. Иногда случается, что одно несовершенное решение приводит нас к другому, более совершенному. Иногда же ряд сходится так медленно, что вычисление практически невыполнимо, и, таким образом, удается лишь доказать .возможность проблемы. Но инженер считает такой ответ насмешкой над собой, и он прав, ибо действительно такой ответ ему нисколько не поможет окончить сооружение к назначенному сроку. Инженеру мало дела до того, окажет ли это решение услугу инженерам XXII столетия: но мы, математики, держимся другого мнения; часто мы бываем более счастливы, если нам удалось сберечь один день труда наших внуков, чем когда мы сберегаем один час для наших современников.

Иногда ощупью, так сказать эмпирически, мы приходим к достаточно быстро сходящейся формуле. «Чего же вам больше?»— говорит инженер, но мы, вопреки всему, не чувствуем удовлетворения; мы бы хотели предвидеть эту сходимость. Почему? Да потому, что если бы мы сумели предвидеть ее однажды, мы сумели бы сделать это и в другой раз. На этот раз мы удачно справились с вопросом; но это для нас не имеет большого значеня, если мы не надеемся серьезно на повторение удачи и в другой раз.

По мере развитая науки становится все более трудным охватить ее всю; тогда стараются разбить ее на части и довольствоваться одной такой частью, словом, специализироваться. Но если бы так продолжалось всегда, то это было бы значительным препятствием для прогресса науки, Хак мы говорил-и уже, этот прогресс осуществляется именно благодаря неожиданным сближениям между различными частями науки. А между тем слишком отдаться специализации — значит закрыть себе дорогу к этим сближениям. Будем же надеяться, что конгрессы, подобные Гейдельбергскому и Римскому, создавая между нами общение, откроют перед каждым из нас картину деятельности его соседей, заставят его сравнить их деятельность с его собственной, выйти несколько за пределы своей деревушки и окажутся, таким образом, лучшим средством против отмеченной мною опасности.

Но я слишком долго останавливаюсь на общих идеях; пора перейти к деталям.

Сделаем обзор различных дисциплин, совокупность которых образует математику. Посмотрим, что сделала каждая из них, каковы ее стремления и чего можно от нее ожидать. Если взгляды, изложенные выше, соответствуют действительности, то мы должны будем увидеть, что в прошлом главные успехи достигались в тех случаях, когда две такие дисциплины сближались к сознанию сходства их форм, невзирая на различие материала, когда они отливались одна по образу другой, благодаря чему каждая из них могла использовать успехи другой. Вместе с тем в сближениях подобного рода мы должны предвидеть и прогресс будущего.

Арифметика

Прогресс в области арифметики совершался медленнее, чем в области алгебры и анализа, и легко понять почему. Арифметисты лишены драгоценного руководителя, каким является чувство непрерывности; каждое целое число стоит отдельно от других целых чисел, оно, так сказать, обладает своей собственной индивидуальностью; каждое из них представляет своего рода исключение; вот почему в области чисел так редки общие теоремы, а те, которые существуют, оказываются сравнительно более глубоко скрытыми и дольше ускользают от внимания исследователей.

Но если арифметика отстала от алгебры и анализа, то лучшее, что она может сделать,— это постараться уподобиться этим наукам, чтобы воспользоваться их успехами Итак, арифметист должен взять в руководители аналогии с алгеброй. Эти аналогии многочисленные, и если во многих случаях они еще не изучены настолько, чтобы их можно было использовать, то во всяком случае их существование предчувствовалось с давних пор; самый язык обеих наук показывает, что эти аналогии были подмечены. Так, говорят о трансцендентных числах, и при этом отдают себе отчет в том, что будущая классификация этих чисел имеет своим прообразом классификацию трансцендентных функций, и в то же время пока еще не видно, как можно будет перейти от одной классификации к другой, но ведь, будь это вполне ясным, этот переход был бы уже выполнен, а не был бы делом будущего.

Как пример, мне прежде всего приходит на ум теория сравнений, в которой мы видим совершенный параллелизм с теорией алгебраических уравнений. Несомненно, что этот параллелизм будет еще пополнен, например, параллелизмом между теорией алгебраических кривых и теорией сравнений с двумя переменными. А когда проблемы относительно сравнений с многими переменными будут разрешены, это будет первым шагом на пути к решению многих вопросов неопределенного анализа.

Область арифметики, совершенно лишенную всякого единства, представляет собой теория простых (первоначальных) чисел. Здесь найдены только асимптотические законы, да других и нельзя ожидать; но эти законы оказываются изолированными; к ним можно прийти лишь по различным путям, между которыми, по-видимому, невозможно никакое сообщение. Мне кажется, что я предвижу, откуда придет желанное единство, но, конечно, не вполне ясно; несомненно, что все сведется к изучению семейства трансцендентных функций, которые дадут возможность путем изучения их особенных точек и с помощью метода Дарбу (4) вычислить асимптотически известные функции очень больших чисел.

Алгебра

Теория алгебраических уравнений еще долго будет привлекать к себе внимание математиков; к ней можно подойти со многих различных между собой сторон, самой важной является, несомненно, теория групп. Но остается еще вопрос о численном определении корней и об исследовании числа действительных корней. Лагерр (5) показал, что Штурм (6) не сказал последнего слова по этому вопросу.

Лет сорок назад казалось, что изучение инвариантов алгебраических форм поглотит всю алгебру; теперь оно почти заброшено, хотя предмет далеко еще не исчерпан; надо только его расширить, не ограничиваясь, например, инвариантами, относящимися к линейным преобразованиям, но захватывая все те, которые относятся к какой-либо группе. Таким образом, прежде добытые теоремы наведут нас на мысль о других, более общих, которые будут группироваться вокруг них, подобно тому, как кристалл растет в растворе.

Не следует думать, что алгебра закончена, раз она дала нам правила образования всех возможных комбинаций; остается еще разыскание интересных комбинаций, удовлетворяющих тому или другому условию. Таким путем может образоваться своего рода неопределенный анализ, в котором неизвестными будут не целые числа, а многочлены.Но здесь уже алгебра будет брать пример с арифметики, руководствуясь аналогией целого числа либо с целым многочленом с произвольными коэффициентами, либо с целым многочленом с целыми же коэффициентами.

Геометрия

По-видимому, геометрия не может содержать ничего такого, чего не было бы уже в алгебре или в анализе: ведь геометрические факты — это те же факты алгебры или анализа, но только выраженные на другом языке. Казалось бы, поэтому, что после того обзора, который мы сделали, не остается больше ничего сказать, специально относящегося к геометрии. Но думать так — значило бы проглядеть важность самого языка, когда он удачно создан, значило бы не понимать того, что прибавляет к вещам способ обозначения этих .вещей и, следовательно, способ ;их группирования.

И прежде всепо геометриические рассуждения приводят наск постановке новых проблем; конечно, это, если угодно, аналитические проблемы, но анализ никогда не привел бы нас к их постановке. Однако анализ извлекает для себя из этого выгоду, как и из того, что он вынужден разрешать проблемы для удовлетворения потребностей физики.

Большое преимущество геометрии состоит именно в том, что в ней чувства могут црийти ,на помощь рассудку и помогают отгадать нужный путь, так что многие предпочитают приводить проблемы анализа к их геометрической форме. К несчастью, наши чувства не могут вести вас особенно далеко, они покидают нас, лишь только мы обнаруживаем желание унестись за три классические измерения. Значит ли это, что, выйдя из той области, в которой они нас, по-видимому, хотят удержать, мы не вправе более .рассчитывать на что-либо, кроме чистого анализа, и что всякая геометрия более чем трех измерений тщетна и бесцельна? Величайшие умы предшествующего нам поколения ответили бы: «да»; мы же теперь так освоились с этим понятием, что можем говорить о нем даже в университетском курсе, не вызывая особенного удивления.

Но к чему оно нам? Ответ очевиден: оно дает нам прежде всего весьма удобный способ выражения, язык, который в очень немногих словах выражает то, что при обыкновенном аналитическом языке потребовало бы пространных фраз. Мало того: этот язык побуждает нас называть одним и тем же именем сходные между собой вещи и закрепляет аналогии, делая невозможным забвение их. Он дает нам возможность ориентироваться в этом пространстве, слишком громадном для нас, которого мы не можем обнять иначе, как вызывая перед собой постоянно образ видимого пространства, хотя последнее представляет собой лишь весьма несовершенное его изображение. И тут, как и в предыдущих примерах, аналогия с тем, что просто, помогает нам понять то, что сложно.

Эта геометрия пространств, имеющих более трех измерений, не является простой аналитической геометрией; она имеет характер не исключительно количественный, но также и качественный, и этим-то она особенно интересна. Есть дисциплина, которую называют «Analysis situs» и предметом изучения которой являются соотношения расположений различных элементов фигуры независимо от их величины. Эта геометрия — чисто качественная: ее теоремы остались бы справедливыми, если бы точные фигуры были заменены грубыми изображениями, созданными ребенком, Можно построить также Analysis situs более чем трех измерений. Важность Analysis situs огромна, и я не думаю, чтобы его значение могло быть преувеличено; это достаточно подтверждается той пользой, которую из него извлек Риман (7), один из главных творцов этой дисциплины. Нужно дойти до ее полного построения в пространствах высшего порядка; тогда у нас будет в руках такое орудие, которое позволит действительно видеть в гиперпространстве и расширить область наших чувственных восприятий.

Быть может, проблемы Analysis situs не были бы даже поставлены, если бы пользовались только языком анализа; впрочем, нет, я ошибаюсь: они были бы, несомненно, поставлены, ибо их разрешение необходимо для множества вопросов анализа, но наверное изолированно, так что нельзя было бы вовсе усмотреть их общей связи. Особенно содействовало недавнему успеху геометрии введение понятия о преобразованиях и группах. Благодаря этому понятию геометрия перестала быть агрегатом теорем, более или менее интересных, но следующих одна за другой без всякого сходства между ними, она приобрела единство. А с другой стороны, история не должна забывать того, что именно по поводу геометрии начали систематически исследовать непрерывные преобразования, так что чистые геометры со своей стороны также содействовали развитию идеи группы, идеи, столь полезной в других отраслях математики.

Канторизм

Выше я говорил о представляющейся нам необходимости постоянно восходить к основным принципам нашей науки и о той пользе, которую отсюда может извлечь наука о человеческом духе. Эта потребность породила два стремления, занявшие весьма обширное место на самых последних страницах истории математики. Первое из них — канторизм, заслуги которого перед наукой известны. Одна из характерных черт канторизма состоит в том, что вместо того, чтобы подниматься к общему, строя все более и более сложные конструкции, и вводить определения через построения, он исходит из genus supremum (8) и дает определения только per genus proximum et differentiam specificam (9), как сказали бы схоластики. Этим объясняется тот ужас, который он некоторое время тому назад вызвал в иных умах, например у Эрмита, излюбленной идеей которого является сравнение математических наук с естественными. У большинства из нас эти предубеждения уже рассеялись, но случилось так, что натолкнулись на некоторые парадоксы, которые привели бы в восторг Зенона Элейского(10) и мегарскую школу (11). И тогда все пустились в поиски за противоядием. Я держусь того мнения — и не я один,— что важно вводить в рассмотрение исключительно такие вещи, которые можно вполне определить при помощи конечного количества слов. Но какое бы противоядие ни было признано действительным, мы можем предвкушать наслаждение врача, имеющего возможность наблюдать интересный патологический случай.

Поиски постулатов

С другой стороны, мы видим попытки перечислить те более или менее скрытые аксиомы и постулаты, которые служат основанием для различных математических теорий. Самые блестящие результаты получил Гильберт. На первый взгляд эта область кажется довольно ограниченной; кажется, что когда перечень будет закончен — а это не замедлит произойти,— нечего будет больше делать. Но когда все будет перечислено, тогда найдется множество приемов для классификации всего материала; хороший библиотекарь всегда находит себе занятие, а каждая новая классификация будет поучительна для философа.

Этим я кончаю мой обзор, которого я не мог и рассчитывать сделать полным по множеству причин, и прежде всего потому, что я и без того уже слишком злоупотребил вашим вниманием. Думаю, что приведенных примеров будет достаточно, для того чтобы показать вам, в чем состоял механизм прогресса математических наук в прошлом и в каком направлении они должны будут двигаться в будущем.

(1) См. сноску (1) главы I.

(2) Подробный анализ гносеологического значения принципов простоты и красоты, их эвристических возможностей и ограниченности их применения дан в работах советских исследователей: Крутов В, Ф. К вопросу об обосновании принципа простоты.— В кн.: Философские исследования. Уч. зап. Ленинградск., пед. ин-та, 1968, 365, с. 304— 317; Кузнецов Б. Г. Об эстетических критериях в современном физическом мышлении. — В кн.: Художественное и научное творчество. Л., 1972, с. 84—90; Мамчур Е. А. Ленинское понимание познания и проблема эвристической простоты.— Вопросы философии, 1969, № 10, с. 16—27; Мамчур Е. А., Илларионов С. В. Регулятивные принципы построения теории.— В кн.: Синтез современного научного знания. М.: Наука, 1973, с. 355—389; Панкевич Г. И. К вопросу о взаимном проникновении естественнонаучных и эстетических принципов в современном познании.— В кн.: Философские проблемы естествознания, М., 1971, с. 147—157; Позднеева С. П. К вопросу об эстетических критериях оценки научных теорий.— В кн.: Вопросы эстетики. Саратов, 1969, вып. 3, с. 75—87, Сухотин А. К. Соотношение критериев простоты и истинности знания.— В кн.: Актуальные проблемы дналектической логики. Алма-Ата: Наука, 1971, с. 263—267.— Прим. ред.

(3) См. сноску (2) главы I.

(4) Известный французский математик, современник Пуанкаре.— Прим. ред.

(5) Французский математик, преподававший в Политехнической школе в то время, когда там учился Пуанкаре.— Прим. ред.

(6) Французский математик, работавший в области математической физики, оптики и механики.— Прим. ред.

(7) Б. Риман (1826—1866) —выдающийся немецкий математик, выдвинувший ряд основных идеи топологии. Имеет многочисленные труды по разнообразным разделам математики.— Прим. ред.

(8) Высший род (лат.).— Прим. ред.

(9) Через родовое сходство и видовое отличие (лат.).— Прим. ред.

(10) Зенои из Злей (ок. 490—430 гг. до н. э.) — древнегреческий философ, известен своими знаменитыми парадоксами: «Ахиллес», «Стрела» и другие.— Прим. ред.

(11) Одна из школ древнегреческой философии, представителям которой приписывают рождение многих известных софизмов.— Прим. ред.


назад содержание далее
Используются технологии uCoz