Совершенно невозможно представить себе пространство пустым. Все наши усилия представить себе чистое пространство, из которого были бы исключены изменчивые образы материальных предметов, могут заканчиваться только тем, что мы составляем себе, например, представление, в котором сильно окрашенные поверхности заменены линиями со слабой окраской; и идти в этом направлении до конца нет возможности без того, чтобы все не уничтожалось, не свелось на нет. Отсюда и возникает неустранимая относительность пространства.
Если кто говорит об абсолютном пространстве, то он употребляет слово, лишенное смысла. Эту истину высказывали уже давно все, кто размышлял по этому вопросу, но ее слишком часто забывают и по сей день.
Я нахожусь в определенной точке Парижа, скажем на площади Пантеона, и говорю: «я возвращусь сюда завтра». Если меня спросить: «разумеете ли вы, что возвратитесь в ту же точку пространства», то я буду склонен ответить: «да!»; и все же я буду неправ, ибо в течение этого времени Земля будет двигаться, унося с собой и площадь Пантеона, которая пробежит, таким образом, свыше двух миллионов километров. Если же я пожелал бы учесть это обстоятельство и выразиться точнее, то это все-таки ни к чему бы не привело; в самом деле, эти два миллиона километров Земля пробежала относительно Солнца; но Солнце перемещается относительно Млечного Пути, а Млечный Путь в свою очередь, несомненно, имеет движение, скорости которого мы не можем знать. Таким образом, мы совершенно не знаем и не будем знать никогда, на какое собственно расстояние перемещается площадь Пантеона в течение суток. Все, что я хотел сказать, сводится, таким образом к следующему: «завтра я снова увижу купол и фасад Пантеона», и если бы не было Пантеона, то моя фраза потеряла бы всякий смысл — пространство свелось бы на нет.
Это одна из наиболее тривиальных форм идеи относительности пространства; но есть и другая точка зрения, которую особенно отстаивал Дельбёф. Вообразим себе, что за одну ночь все размеры Вселенной возросли в тысячу раз. Мир остался бы подобен самому себе, если разуметь под подобием то, что указано в третьей книге «Геометрии». Все сведется к тому, что предмет, имевший метр в длину, будет измеряться километром; предмет, имевший миллиметр, возрастет до метра. Постель, на которой я лежал, и само мое тело возрастут в одной и той же пропорции. Что же почувствую я на следующее утро, проснувшись после такого поразительного превращения? Я попросту ничего не замечу. Самые точные измерения не будут в состоянии ни в малейшей мере обнаружить этот поразительный переворот, ибо метры, которыми я буду пользоваться, изменятся в совершенно том же отношении, что и предметы, которые я буду измерять. В действительности переворот существует только для тех, которые рассуждают так, как будто бы пространство было абсолютным. Если бы я стал на минуту рассуждать, как они, то лишь для того, чтобы обнаружить, что их точка зрения необходимо содержит противоречие. В действительности было бы лучше сказать, что ввиду относительности пространства не произошло, собственно говоря, ничего, и именно потому мы ничего не заметили.
Можем ли мы, таким образом, сказать, что мы знаем расстояние между точками. Нет, ибо это расстояние может подвергнуться огромным изменениям, и мы могли бы их не заметить, если бы другие расстояния изменились в той же пропорции. Если я говорю: «я буду здесь завтра», то, как мы видели только что, я не хочу этим сказать, что я буду завтра в той же точке пространства, где сегодня; я имею в виду только, что я буду завтра на том же расстоянии от Пантеона, что и сегодня. Но, строго говоря, и эта формулировка недостаточно ясна. Я, собственно, должен был бы сказать: «завтра, как и сегодня, расстояние от меня до Пантеона составит столько-то раз взятую длину моего тела».
Но это не все; я предположил, что размеры мира изменятся, но что этот мир останется по крайней мере подобен самому себе. Но в этом направлении можно идти гораздо дальше, и одна из наиболее поразительных теорий современных физиков дает нам. к этому повод. По теории Лоренца и Фицджеральда все тела, увлекаемые движением Земли, подвергаются деформации. Эта деформация в действительности весьма мала, потому что все размеры, параллельные движению Земли, должны уменьшиться на одну стомиллионную часть, между тем как размеры, перпедикулярные этому движению, совсем не должны измениться. Но для нас даже неважно, что эти изменения ничтожны; достаточно того, что они существуют, чтобы сделать вывод, который я имею в виду. Да к тому же, когда я говорю, что изменения ничтожны, я в действительности об этом ничего не знаю; я обнаруживаю только, что становлюсь сам жертвой упорной иллюзии, рисуя себе абсолютное пространство. Я размышлял о движении Земли вокруг Солнца по ее эллиптической орбите, и я принял скорость, равную 30 километрам. Но ее истинная скорость (я разумею на этот раз не абсолютную скорость, которая не имеет никакого смысла, а скорость по отношению к эфиру) мне совершенно неизвестна, и я не имею никаких средств ее узнать; она может быть в 10, 100 раз больше; а тогда и деформация будет в 100 или в 10000 раз больше.
Можем ли мы обнаружить эту деформацию? Конечно, нет. Вот перед нами куб, ребро которого равно одному метру; вследствие перемещения Земли куб испытывает деформацию; одно из ребер, то, которое параллельно движению, становится меньше, дру- гие же не изменяются. Если я хочу в этом убедиться при помощи метра, то я измерю сначала одно из ребер, перпендикулярных движению, и найду, что мой метр точно совпадет с этим ребром; и, в самом деле, ни одна из этих величин ведь не изменилась, так как обе они перпендикулярны движению. Я хочу затем измерить другое ребро, параллельное движению: для этого я перемещаю свой метр и поворачиваю его, чтобы наложить на это ребро. Но метр, изменив свое направление и сделавшись параллельным движению, в свою очередь претерпел деформацию; таким образом, хотя длина ребра не равна более одному метру, последний точно совпадает с ребром, и я ровно ничего не замечу.
Меня спросят в таком случае, в чем же польза гипотезы Лоренца и Фицджеральда, если она не может быть проверена опытом? Но мое изложение не было полное, я говорил только об измерениях, которые могут быть произведены при помощи метра; но длину можно измерять и при помощи времени, которое нужно свету, чтобы ее пробежать, в предположении, что скорость света постоянна и не зависит от направления. Лоренц мог бы дать объяснение того же факта, допустив, что скорость света по направлению движения Земли больше, чем скорость света в перпендикулярном направлении. Он предпочел допустить, что скорость эта одинакова во всех направлениях, но что тела в одних направлениях обладают меньшими размерами, чем в других. Если бы поверхности световой волны испытали те же деформации, что и материальные тела, то мы не заметили бы деформации Лоренца—Фицджеральда.
Как в одном случае, так и в другом нет речи об абсолютной неличине, а лишь об измерении этой величины посредством какого-нибудь инструмента; этим инструментом может быть метр или же путь, пройденный светом; мы измеряем только отношение величины к инструменту, и, если это отношение изменилось, мы никоим образом не можем узнать, что именно изменилось — измеряемая величина или инструмент.
Но я хочу лишь показать, что при деформации, о которой идет речь, мир не остался себе подобным: квадраты обратились в прямоугольники или в параллелограммы, круги — в эллипсы, сферы — в эллипсоиды. И, однако, мы ни в каком случае не можем знать, реальна ли эта деформация.
Очевидно, что в этом направлении можно было бы пойти гораздо дальше: вместо деформации Лоренца—Фицджеральда, законы которой чрезвычайно просты, мы могли бы вообразить какую-нибудь совершенно произвольную деформацию. Тела могли бы изменяться по законам, сколь угодно сложным, и мы бы этого не заметили, если бы все тела без исключения подчинялись тем же законам. Говоря «все тела», я разумею, конечно, в том числе и наше тело и световые лучи, исходящие от разных предметов. Если бы мы рассматривали мир в одном из тех зеркал сложной формы, которые самым причудливым образом изменяют предметы, то взаимные отношения различных частей мира от этого не изменялись бы; если, в самом деле, два реальных предмета касаются друг друга, то их изображения также будут касаться друг друга. Собственно говоря, когда мы смотрим в такое зеркало, мы замечаем происшедшую деформацию, но это потому, что реальный мир существует рядом с его измененным образом, и если бы даже этот реальный мир был от нас скрыт, то все же осталось бы нечто, что от нас не было бы скрыто: это мы сами; мы не можем не видеть или по крайней мере не чувствовать нашего тела и наших членов, которые не испытали деформации и продолжают служить нам орудием измерения. Но если бы мы вообразили, что наше тело изменилось и притом стало таким, каким оно показалось бы в зеркале, то у нас исчезло бы орудие измерения, и деформация не могла бы быть обнаружена.
Вот два мира, из которых каждый является изображением другого; всякому предмету Р мира А соответствует в мире В предмет Р’, который и есть его изображение; координаты изображения являются определенными функциями координат предмета Р; эти функции могут, конечно, быть какими угодно; я предполагаю только, что они выбраны раз и навсегда. Между положением Р и положением Р’ существует постоянное соотношение; неважно, каково это соотношение; достаточно, что оно постоянное.
При таких условиях эти два мира не будут отличимы друг от друга. Я хочу сказать, что первый будет для своих обитателей тем же, чем является второй мир для своих.
И так будет до тех пор, пока два мира останутся обособленными друг от друга. Допустим, что мы обитаем в мире А, что мы построили нашу науку и, в частности, нашу геометрию. В это же время обитатели мира В также построят науку и, так как их мир есть образ нашего мира, то их геометрия будет также образом нашей геометрии, или, лучше сказать, она будет такой же, как и наша. Но если в один прекрасный день перед нами откроется окно в мир В, нас охватит чувство жалости: «несчастные, — скажем мы, — они думают, что построили геометрию, но то, что они называют этим именем, есть не что иное, как смешной и странный образ нашей геометрии, их прямые искривлены, их круги искажены буграми, их сферы усажены капризными неровностями». И мы не сомневаемся в том, что они скажут то же самое о нас, и никогда нельзя будет сказать, кто прав.
Ясно, таким образом, в каком широком смысле нужно понимать относительность пространства. В действительности пространство аморфно, и форму ему сообщают те вещи, которые в нем находятся. Что же можно сказать о той непосредственной интуиции, которую мы как будто имеем о прямой линии и о расстоянии? Мы столь мало обладаем интуицией расстояния самого по себе, что, как мы уже сказали, в течение ночи расстояние может увеличиваться в тысячу раз незаметно для нас, если только все другие расстояния испытывают то же самое изменение. И в течение ночи же мир В может стать на место мира А, причем мы этого решительно не будем знать; вместе с тем прямые линии перестанут быть прямыми и мы этого совершенно не заметим.
Одна часть пространства сама по себе и в абсолютном смысле слова не равна другой части пространства; ибо если она равна для нас, она не равна для обитателей мира В; а эти последние могут иметь такое же точно право отвергнуть наше воззрение, какое имеем мы для того, чтобы отвергнуть их воззрение.
Я указал в другом сочинении, какие последствия вытекают из этих фактов для того представления, которое мы должны себе составить о неевклидовой геометрии и о других аналогичных геометриях; я не буду к ним возвращаться. Теперь же я стану на несколько иную точку зрения.
Если эта интуиция расстояния, направления, прямой линии, словом, если эта непосредственная интуиция пространства не существует, то почему нам кажется,.что мы ее имеем? Если здесь только иллюзия, то почему эта иллюзия держится так прочно? Этот вопрос требует исследования. Непосредственной интуиции величины, сказали мы, не существует, и мы в состоянии только определить отношение этой величины к нашим измерительным инструментам. Мы не были бы способны построить пространство, если бы мы не имели инструмента для его измерения. А инструмент, к которому мы все относим, которым мы инстинктивно пользуемся, — это наше собственное тело. По отношению к нашему телу мы располагаем внешние предметы, и единственные пространственные отношения этих предметов, какие мы можем себе представить, суть их отношения с нашим телом. Наше тело служит, так сказать, системой осей координат.
Например, в один момент a присутствие предмета А обнаруживается мною органом зрения. В другой момент b присутствие другого предмета В обнаруживается мною при помощи другого органа чувств, например слуха или осязания. Я заключаю, что предмет В занимает то же место, что и предмет А. Что же это значит? Прежде всего, это не значит, что оба предмета занимают в два различных момента одну и ту же точку в абсолютном пространстве; такое пространство, если бы и существовало, ускользало бы от нашего сознания, ибо между моментами a и b Солнечная система переместилась, а мы этого перемещения не знаем. Это значит только, что оба предмета занимают одно и то же положение по отношению к нашему телу.
Но какое же содержание имеет это утверждение? Впечатления, которые мы получили от этих предметов, шли по совершенно различным путям: по зрительному нерву для предмета А, по слуховому нерву для предмета В. С точки зрения качественной эти впечатления не имеют ничего общего. Представления, которые мы можем себе составить об этих двух предметах, являются абсолютно разнородными, друг к другу не сводимыми. Но я знаю только, что мне стоит известным образом протянуть правую руку, и я ухвачу тело А; если даже я воздерживаюсь от соответствующего движения, то я представляю себе мускульные ощущения и другие аналогичные ощущения, которыми сопровождается это движение. Такое представление и ассоциируется с представлением предмета А.
Я знаю, однако, что могу достать тело В, протягивая тем же самым образом правую руку, причем это движение сопровождается таким же рядом мускульных ощущений. И только это я и разумею, когда утверждаю, что оба предмета занимают одно и то же положение.
Я знаю также, что мог бы достать предмет А при помощи другого подходящего движения левой руки, и я представляю себе те мускульные ощущения, которыми сопровождалось бы это движение; и при помощи того же движения левой руки, влекущего за собою те же ощущения, я мог бы достать предмет В.
Это очень важно, потому что именно этим путем я могу защитить себя против опасностей, которыми мне могут угрожать предметы А и В. Каждому удару, который может быть нам нанесен извне, природа противопоставила один или несколько ответных ударов, которые имеют для нас предохранительное значение. Одним и тем же парированием можно отвечать на несколько ударов; например, одним и тем же движением правой руки можно будет защитить себя в момент a против предмета A и в момент b против предмета В. Точно так же один и тот же удар может быть отражен несколькими приемами, и, например, как мы уже указали, предмет А можно достать при помощи известного движения либо правой, либо левой руки.
Все эти ответные удары не имеют между собою ничего общего, кроме того, разве, что они дают возможность избежать одного и того же удара, и только об этом-то идет речь, когда мы говорим о них как о движениях, заканчивающихся в одной и той же точке пространства. Равным образом, то общее, которое заключается в предметах, когда мы говорим, что они занимают одно и то же место пространства, выражается лишь в том, что для защиты от них может быть употреблен один и тот же ответный удар.
Другими словами, представим себе сеть бесчисленных телеграфных проволок, из которых одни имеют центробежное, другие центростремительное направление. Центростремительные проволоки предупреждают нас о бедах, совершившихся во внешнем мире, центробежные должны принести помощь. Соединения установлены таким образом, что когда по одной из центростремительных проволок пробегает ток, он действует на электрический прибор, реле, и вызывает ток в одной из центробежных проволок. При этом несколько центростремительных проволок могут действовать на одну и ту же центробежную, если один и тот же вид помощи применим в разных несчастных случаях, и одна центростремительная проволока может поколебать разные центробежные проволоки либо одновременно, либо в каком-нибудь последовательном порядке, если одно и то же бедствие может быть исправлено несколькими средствами.
Вот эта-то сложная система связей, этот, если можно так сказать, распределительный щит и есть вся наша геометрия или, иначе говоря, все то инстинктивное, что заключается в нашей геометрии. То, что мы называем интуицией прямой линии или расстояния, и есть реализация в нашем сознании этих связей и их управляющего характера.
Легко понять, откуда вытекает этот управляющий характер. Связь нам кажется тем более неразрушимой, чем древнее ее происхождение. Но эти связи в большинстве случаев не являются приобретениями индивидуума, ибо в зачаточном состоянии они заметны уже у новорожденного. Эти связи — приобретения расовые (1). Естественный отбор должен был упрочить их тем скорее, чем они более необходимы.
В числе последних на первом месте должны были быть, конечно, те приобретения, о которых мы говорили, потому что без них защита организма была бы невозможна. Как только клетки вышли из стадии простого наложения и стали вступать в стадию взаимного служения друг другу, должен был создаться механизм, аналогичный тому, который мы выше описали, для того, чтобы это служение не уклонялось от должного пути и направлялось против опасности.
Если пустим каплю кислоты на кожу обезглавленной лягушки, то последняя старается снять эту каплю лапой, ближайшей к тому месту, где упала капля; а если эта лапа ампутирована, то лягушка пользуется другой лапой. Вот пример того дублирования ответного удара, о котором я только что говорил и которое позволяет бороться с бедствием вторым средством, если первое вышло из строя. Именно эта множественность ответных ударов и координация, которая из нее вытекает, образуют в своей совокупности пространство.
Мы видим, в какие глубины бессознательного надобно спуститься, чтобы найти первые следы пространственных связей, ибо в них играют роль простейшие и низшие части нервной системы. Можно ли после этого удивляться сопротивлению, которое мы оказываем каждой попытке разъединить то, что уже так давно соединено? Но это сопротивление и есть то, что мы называем очевидностью геометрических истин, эта очевидность есть не что иное, как то тягостное чувство противления, которое мы обыкновенно испытываем, когда отказываемся от очень старых привычек, с коими нам всегда легко жилось.
Созданное таким образом пространство имеет малые размеры: оно не простирается дальше того места, которое достигается моей рукой. Границы пространства расширяются благодаря вмешательству памяти. Имеются такие точки, которые навсегда останутся для меня недостижимыми, какие бы усилия я ни употреблял, протягивая руку. Если бы я был прикреплен к почве наподобие, например, гидроидного полипа, который может протягивать свои щупальца, то все эти точки оставались бы вне пространства, по-тому что те ощущения, которые мы можем испытывать благодаря действию тел, помещенных в этих точках, не были бы ассоциированы ни с какой-либо идеей движения, необходимого для достижения этих тел, ни с каким-либо соответствующим ответным ударом. Нам казалось бы, что эти ощущения не имеют пространственного характера, и мы не старались бы их локализовать.
Но, в отличие от низших животных, мы не прикреплены к почве. Если враг находится далеко от нас, то мы можем до него дойти и, приблизившись, протянуть руку. Это тоже ответный удар, но дальнего действия. Кроме того, это сложный ответный удар и в представление, которое мы о нем себе составляем, входит представление о мускульных ощущениях, вызванных движением ног, представление о мускульных ощущениях, вызванных конечным движением руки, представление об ощущениях полукружных каналов и т. д. Мы должны, кроме того, представить себе не комплекс одновременных ощущений, а комплекс ощущений последовательных, сменяющих друг друга в определенном порядке, и вот почему я указал выше на необходимость вмешательства памяти.
Заметим еще, что для того, чтобы прийти к одной и той же точке, я могу очень близко подойти к цели, которую мне нужно достигнуть, и лишь немного вытянуть руку. Что же еще мне известно? Не один, а тысячу ответных ударов могу я противопоставить одной и той же опасности. Все эти удары образованы из ощущений, которые могут не иметь между собой ничего общего, но мы их рассматриваем как определяющие одну и ту же точку пространства, потому что они могут отвечать одной и той же опасности и все ассоциированы с понятием об этой опасности. Возможность парировать один и тот же удар и сообщет этим различным ответным ударам единство, подобно тому как возможность быть парированным одним и тем же способом сообщает единство различного рода ударам, которые могут угрожать нам из одной и той же точки пространства. Именно это двоякое единство и создает индивидуальность каждой точки пространства, а понятие о точке ничего, кроме этого, в себе не заключает.
Пространство, которое я рассматривал в предыдущем разделе, и которое я мог бы назвать ограниченным пространством, было отнесено к осям координат, связанным с моим телом; эти оси были постоянны, так как мое тело не двигалось, а перемещались лишь мои члены. Каковы же оси, к которым может быть отнесено расширенное пространство, т. е. то пространство, которое я только что определил? Мы определяем точку при помощи ряда движении, которые необходимо совершить для ее достижения, исходя при этом из определенного начального положения тела. Оси, следовательно, связаны с этим начальным положением.
Но положение, которое я называю начальным, может быть произвольно избрано среди всех тех положений, которые мое тело последовательно занимало; если более или менее бессознательное воспоминание об этих последовательных положениях необходимо для генезиса понятия пространства, то это воспоминание может простираться более или менее далеко в прошлое. Отсюда получается известная неопределенность в самом определении пространства и этой именно неопределенностью обусловливается его относительность.
Итак, нет абсолютного пространства, а есть только пространство, отнесенное к известному начальному положению тела. Для сознательного существа, которое, как низшие животные, было бы прикреплено к почве и которому, следовательно, было бы знакомо лишь ограниченное пространство, это пространство также было бы относительным, так как оно было бы отнесено к его телу; но такое существо не сознавало бы этой относительности, потому что оси, к которым оно относило ограниченное пространство, не изменялись бы! Конечно, скала к которой это существо было бы приковано, не оставалась бы неподвижной, так как она увлекалась бы движением нашей планеты; для нас, следовательно, эти оси изменялись бы в каждое мгновение; но для него они оставались бы неизменными. Мы обладаем способностью относить наше расширенное пространство то к положению А нашего тела, рассматриваемому как начальное, то к положению В, которое наше тело приобрело несколькими мгновениями позже и которое совершенно свободно можем также рассматривать как начальное; мы, следовательно, каждое мгновение производим бессознательное изменение координат. Этой способности не было бы у нашего воображаемого существа; лишенное возможности путешествовать, оно почитало бы пространство абсолютным. В каждое мгновение его система в действительности изменялась бы, но для него она оставалась бы одной и той же, так как она была бы единственной его системой. Не то для нас, обладающих в каждое мгновение несколькими системами, между которыми мы можем произвольно выбирать, и сохраняющих воспоминания, которые могут нас переносить в более или менее далекое прошлое.
Но это не все. Ограниченное пространство не было бы однородным; различные точки этого пространства не могли бы рассматриваться как эквивалентные, потому что для достижения одних потребовались бы величайшие усилия, для достижения других — незначительные. Напротив, наше беспредельное пространство кажется нам однородным, и мы говорим, что все его точки эквивалентны. Что же это, собственно, значит?
Если мы исходим из известного положения А, то мы можем совершить известные движения М, характеризуемые известным комплексом мускульных ощущений. Но, исходя из другого положения В, мы сможем совершить движения М’, характеризуемые теми же мускульными ощущениями. Обозначим через a положение определенной точки тела, например конца указательного пальца правой руки при начальном положении А, и обозначим через b положение того же пальца после того, как, исходя из этого положения А, мы совершили движения М. Пусть а’ будет положение того же пальца в В, а b’ — положение того же пальца после совершения движений М’.
Так вот, при таких условиях я обыкновенно говорю, что точки пространства а и b относятся друг к другу как точки а’ и b’, a это обозначает только, что два ряда движений М и М’ сопровождаются одними и теми же мускульными ощущениями. И так как я сознаю, что при переходе из положения А в В мое тело сохранило способность к одним и тем же движениям, то я знаю, что есть точка пространства, которая по отношению к точке а’ составляет то же, что произвольно выбранная точка В относительно точки а, и что, таким образом, обе точки а и а’ эквивалентны. И вот поэтому пространство в то же время относительно, ибо его свойства остаются одними и теми же, когда оно отнесено к осям А или к осям В. Таким образом, относительность пространства и его однородность — это одно и то же.
Теперь, если я захочу перейти к огромному пространству, которое служит уже не только для меня, но в котором я могу себе представить всю Вселенную, я прибегну к акту воображения. Я представлю себе, что испытал бы великан, который несколькими шагами достиг бы планет или, если это угодно, что испытал бы я сам перед лицом миниатюрного мира, в котором планеты были бы заменены маленькими шариками, и на одном из них суетился бы лилипут, и этим лилипутом был бы я. Но вот акт воображения был бы для меня невозможен, если бы я не построил предварительно и притом для собственного обихода своего ограниченного и своего обширного пространства.
Теперь возникает вопрос; почему все эти пространства имеют три измерения? Обратимся к «распределительному щиту», о котором мы говорили выше. Мы имеем, с одной стороны, список возможных опасностей: обозначим их через А1, A2 и т. д.; с другой стороны — список разных средств защиты, которые мы обозначим через В1, В2 и т. д. Мы имеем, таким образом, связи между элементами первого и второго списков, так что, когда, например, сработает сигнализатор опасности A3, он приведет или может привести в действие реле, соответствующее ответному удару B3.
Так как я говорил выше о центростремительных и центробежных проволоках, то я опасаюсь, как бы во всем этом не усмотрели не простое сравнение, а описание нервной системы. Но моя мысль не такова. Прежде всего я не позволил бы себе высказать мнение относительно структуры нервной системы, которой я не знаю, между тем как лица, изучавшие ее, высказываются о ней с большой осторожностью. Затем, несмотря на мою некомпетентность, я чувствую, что эта схема была бы слишком упрощенной, и, наконец, в моем списке ответных ударов имеются некоторые очень сложные; как мы выше видели, когда речь шла об обширном пространстве, некоторые ответные удары могут включать в себя ряд движений ног, сопровождающихся движением руки. Дело, следовательно, идет не о физической связи между двумя реальными проводниками, но о психологической связи между двумя рядами ощущений.
Если сигнализаторы А2 и A2, например, связаны один и другой с ответным ударом B1, и если А1 связан также с ответным ударом B2, то обыкновенно случается, что A2 и B2 также связаны. Если бы этот основной закон не был вообще справедлив, то произошло бы неимоверное смешение, и ничего схожего с понятием о пространстве или с геометрией не могло бы составиться. В самом деле, вспомним, как мы определяли точку пространства. Мы это сделали двояко: с одной стороны, мы имели совокупность сигнализаторов A, которые связаны с одним и тем же ответным ударом В, с другой — совокупность ответных ударов В, связанных с одним и тем же сигнализатором А. Если бы наш закон не был справедлив, следовало бы сказать, что А1 и A2 отвечают одной и той же точке, потому что оба они связаны с ответным ударом B1, но, равным образом, следовало бы также сказать, что они не отвечают одной и той же точке, потому что А1 связан с В2, а A2 не связан с В2. Это было бы противоречием.
Но, с другой стороны, если бы закон был строго и всегда правилен, пространство было бы отлично от того, каким оно является. Мы имели бы резко очерченные категории, между которыми распределились бы, с одной стороны, сигнализаторы A и с другой — ответные удары В эти категории были бы чрезвычайно многочисленны, но они были бы друг от друга совершенно отделены. Пространство было бы составлено из очень многочисленных, но раздельных точек, оно было бы прерывным. Не было бы оснований предпочесть один порядок расположения точек другому, не было бы, следовательно, оснований приписывать пространству три измерения.
Но дело обстоит не так. Да будет мне позволено воспользоваться на мгновение языком людей, уже знающих геометрию. Это даже необходимо, потому что именно такой язык наиболее понятен читателям, которых я имею в виду, поясняя свою мысль. Когда я хочу отразить удар, я стараюсь достигнуть той точки, откуда удар исходит, но для этого достаточно, чтобы я приблизился к точке на надлежащее расстояние. В таком случае ответный удар В1 может отвечать ударам A1 и A2, если только точка, отвечающая В1, одновременно достаточно близка к точкам, отвечающим А1 и A2. Но может случиться, что точка, отвечающая другому ответному удару B2, окажется достаточно близкой к точке, отвечающей А1, но недостаточно близкой к точке, отвечающей A2. Таким обра-зом, ответный удар B2 будет соответствовать А1 и не соответствовать А2.
Для того, кто не знает еще геометрии, все это покажется просто нарушением формулированного выше закона. Для него дело будет просходить таким образом: два ответных удара В1 и В2 будут связаны с одним и тем же сигнализатором А1 и с еще большим числом сигнализаторов, которые мы включили в ту же кате- горию, в какой находится A1, и которые мы отнесем к одной и той же точке пространства. Но мы сможем найти сигнализаторы А2, которые будут связаны с В2, не,будучи связанными с B1 и которые зато связаны с B3, причем В3 не связан с А1, и.т. д. Итак, мы можем писать ряд В1, A1, B2, А2, В3, A3, B4, A4 в котором каждый член связан со следующим и с предыдущим, но не связан с членами, отстоящими от него дальше.
Излишне прибавлять, что каждый из членов этих рядов не является изолированным, а составляет часть очень многочисленной категории других сигнализаторов или других ответных ударов. Эта категория имеет такие же связи, как и первый член, и ее можно рассматривать как относящуюся к одной и той же точке пространства. Основной закон, несмотря на исключения, остается, следовательно, почти всегда верным. Но благодаря этим исключениям упомянутые категории вместо того, чтобы оставаться совершенно обособленными, захватывают друг друга некоторыми частями, проникают одни в другие, и пространство, таким образом, становится непрерывным.
С другой стороны, порядок, в котором категории должны быть размещены, не оказывается уже произвольным. Обращаясь к предыдущему ряду, легко заметить, что В2 должен быть помещен между А1 и А2 и, следовательно, между В1 и В3, но не может быть помещен, например, между В3 и B4.
Итак, существует порядок, в котором естественно располагаются категории, отвечающие точкам пространства. И опыт нас учит, что этот порядок представляется в виде таблицы с тремя входами, вот почему пространство имеет три измерения.
Характерная особенность пространства, выражающаяся в том, что оно обладает тремя измерениями, есть, таким образом, особенность нашего распределительного щита, есть, так сказать, внутреннее свойство человеческого ума. Достаточно было бы разрушить некоторые из соединений, т. е. некоторые ассоциации идей, чтобы получить другой распределительный щит, а этого было бы достаточно, чтобы пространство приобрело четвертое измерение. Такой результат может удивить некоторых. Ведь внешний мир, скажут они, должен же играть здесь какую-то роль. Если число измерений зависит от того, как мы созданы, то можно предположить, что мыслящие существа, живущие в нашем мире, но созданные иначе, чем мы, полагали бы, что пространство имеет больше или меньше трех измерений. И не утверждал ли Цион, что японские мыши, имеющие только две пары полукружных каналов, думают, что пространство имеет два измерения? А подобное мыслящее существо, если бы оно было способно создать физику, разве не построило бы физики двух или четырех измерений, физики, которая, в известном смысле, была бы такою же, как и наша, ибо она описывала бы другим языком тот же самый мир?
В самом деле, не представляет, по-видимому, никаких затруднений перевести нашу физику на язык геометрии четырех измерений. Осуществить действительно такую задачу значило бы потратить много усилий с ничтожной пользой, и я ограничусь лишь указанием на механику Герца, в которой мы имеем нечто, напоминающее такой перевод. Но такой перевод, по-видимому, всегда был бы сложнее текста и всегда обнаруживал бы свою заимствованную природу, тогда как язык трех измерений кажется наиболее приспособленным к описанию нашего мира, хотя это описание может быть точно выполнено и на другом языке.
Однако наш распределительный щит возник не случайно. Имеется связь между сигналом А1 и ответным ударом В1, это — внутреннее свойство нашего ума. Но чем объясняется эта связь? Тем, что ответный удар В1 позволяет действительно защититься против опасности А1, а это — факт, внешний для нас, это — свойство, внешнего мира. Таким образом, наш распределительный щит есть лишь выражение совокупности внешних фактов; если он имеет три измерения, то это потому, что он приспособлен к миру, имеющему определенные свойства, и главное из этих свойств заключается в том, что в этом мире существуют твердые тела, перемещающиеся по таким законам, которые мы называем законами движения неизменяющихся твердых тел. Если, следовательно, язык трех измерений лучше всего позволяет нам описать наш мир, то мы не должны этому удивляться. Этот язык скопирован с нашего распределительного щита, а этот щит установлен для того, чтобы можно было жить в этом мире.
Я сказал, что мы могли бы представить себе мыслящие существа, живущие в нашем мире и обладающие распределительным щитом четырех измерений; такие существа мыслили бы сверхпространство. Но не может быть уверенности в том, что такие существа, если бы и рождались, могли бы выжить и защититься против тысяч опасностей, которыми они были бы окружены в этом мире.
В заключение несколько замечаний. Существует разительный контраст между грубостью той примитивной геометрии, которая сводится к распределительному щиту, и безграничной точностью геометрии геометров. И, однако, последняя — плод первой. Но не ее одной; она должна была быть оплодотворена присущей нам способностью к построению математических понятий, как, например, понятия о группах; нужно было среди этих чистых понятий найти наиболее приспособленное к этому грубому пространству, генезис которого я пытался объяснить на предшествующих страницах и которое является общим у нас и у высших животных.
Очевидность некоторых геометрических постулатов, сказали мы, есть не что иное, как наша косная неспособность отказаться от очень старых привычек. Но эти постулаты чрезвычайно точны, тогда как привычки заключают в себе нечто по существу зыбкое. И, как только мы хотим мыслить, мы испытываем нужду в этих чрезвычайно точных постулатах, так как лишь с их помощью мы можем избежать противоречия. Но среди всех возможных систем постулатов имеются такие, которые мы отказываемся принять, потому что они не согласуются с нашими привычками; как ни зыбки, как ни эластичны эти привычки, все же они имеют предел этой эластичности.
Мы видим, что если геометрия не есть экспериментальная наука, то это все же наука, рожденная в связи с опытом; мы создали пространство, которое она изучает, но мы приспособили его к миру, в котором мы живем. Мы сделали выбор наиболее удобного пространства, но этим выбором руководил опыт. И так как выбор был бессознателен, то нам кажется, что он для нас необходим; одни говорят, что он сделался для нас необходимым путем опыта, другие говорят, что мы рождаемся с вполне сложившимся представлением о пространстве. Из предыдущих рассуждений явствует, какая доля истины и ошибки заключается в этих двух суждениях.
Очень трудно определить участие индивида и участие расы (1) в том эволюционном процессе воспитания, который закончился построением пространства. В какой мере кто-нибудь из нас, будучи перенесен с момента рождения в другой совершенно мир, где, например, преобладали бы тела, перемещающиеся по законам движения, свойственным неевклидовским твердым телам, в какой мере, повторяю, мог бы он отказаться от пространства предков, чтобы построить совершенно новое пространство?
Участие расы кажется преобладающим. Однако если мы и обязаны ему грубым пространством, зыбким пространством высших животных, о котором я говорил выше, то не обязаны ли мы бессознательному опыту индивида тем безгранично точным пространством, которое имеет геометр? Этот вопрос нелегко разрешается. Укажем, однако, на факт, который показывает, что пространство, завещанное нам предками, сохраняет известную пластичность. Некоторые охотники научиваются ловить рыбу под водой, хотя изображение этих рыб вследствие преломления несколько приподнято. Они учатся этому инстинктивно: они сумели, следовательно, изменить свой прежний инстинкт направления. Или, если хотите, они сумели на место связи А1, В1 поставить другую связь А1, В2 , потому что опыт показал им, что с первой связью нельзя достигнуть цели.
(1) Под расой Пуанкаре имеет в виду человеческий род. — Прим. ред.