В специальной теории относительности Эйнштейн разрешил конфликт между накопленными за века интуитивными представлениями о движении и постоянством скорости света. Вкратце его выводы состояли в том, что наша интуиция имеет изъяны – она срабатывает при скоростях, которые обычно чрезвычайно малы по сравнению со скоростью света и поэтому скрывают истинную суть пространства и времени. Специальная теория относительности раскрыла их природу и показала, что она радикально отличается от существовавших ранее представлений. Однако переосмысление понятий пространства и времени оказалось нелегким делом. Эйнштейн вскоре осознал, что одно из многочисленных следствий специальной теории относительности является особенно глубоким: утверждение, что ничто не может превысить скорость света, оказалось несовместимым со всеми уважаемой ньютоновской теорией всемирного тяготения, сформулированной во второй половине XVII в. Таким образом, разрешив одно противоречие, специальная теория относительности породила другое. После десятилетия интенсивных, иногда мучительных исследований, Эйнштейн разрешил эту дилемму в общей теории относительности. В этой теории он еще раз совершил революцию в понимании свойств пространства и времени, показав, что они искривляются и деформируются, передавая действие силы тяжести.
В 1642 г. в Линкольншире в Англии родился Исаак Ньютон, который изменил лицо науки, поставив всю мощь математики на службу физическим исследованиям. Интеллект Ньютона был столь всеобъемлющ, что, например, когда он однажды обнаружил, что не существует математического аппарата, требуемого для проводимых им исследований, он создал его. Прошло почти три столетия, прежде чем наш мир снова посетил гений сопоставимого масштаба. Ньютону мы обязаны многими глубокими проникновениями в сущность мироздания. Для нас первостепенное значение будет иметь его теория всемирного тяготения.
Сила тяжести везде вокруг нас в повседневной жизни. Она удерживает нас и все окружающие тела на поверхности Земли, не позволяет воздуху, которым мы дышим, ускользнуть в космическое пространство, удерживает Луну на орбите вокруг Земли, а Землю – на орбите вокруг Солнца. Сила тяжести диктует ритм космического танца, который неустанно и педантично исполняется миллиардами миллиардов обитателей Вселенной, от астероидов до планет, от звезд до галактик. Более трех столетий авторитет Ньютона заставлял нас принимать на веру, что одна только сила тяготения отвечает за все разнообразие земных и внеземных событий. Однако до Ньютона не было понимания того, что падение яблока с дерева есть проявление того же закона, который удерживает планеты на орбитах вокруг Солнца. Сделав отважный шаг в сторону гегемонии науки, Ньютон объединил физические принципы, управляющие Землей и небесами, и объявил силу тяжести невидимой рукой, действующей в обеих сферах.
Ньютоновскую концепцию тяготения можно было бы назвать великим уравнителем. Ньютон объявил, что абсолютно всеоказывает воздействие на абсолютно все во Вселенной. Это воздействие представляет собой силу тяжести, которая является силой притяжения. Независимо от физической структуры, все оказывает и все испытывает воздействие силы тяжести. Основываясь на тщательном анализе проведенного Иоганнесом Кеплером изучения движения планет, Ньютон пришел к выводу, что сила гравитационного притяжения между двумя телами зависит только от двух величин: от количества вещества в каждом теле и от расстояния между ними. Вещество означает материю, состоящую из протонов, нейтронов и электронов, которые, в свою очередь, определяют массу объекта. Ньютоновская теория всемирного тяготения утверждает, что сила притяжения между двумя телами будет больше для тел большей массы и меньше для тел меньшей массы; она также утверждает, что сила притяжения увеличивается при уменьшении расстояния между телами, и уменьшается при увеличении расстояния.
Ньютон не просто дал это качественное описание, он сделал больше, сформулировав уравнения, количественно описывающие силу тяжести, действующую между двумя телами. Конкретно, эти уравнения утверждают, что сила тяготения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Этот «закон тяготения» может быть использован для предсказания движения планет и комет вокруг Солнца, Луны вокруг Земли и ракет, отправляющихся для исследования планет, а также для решения более приземленных задач – расчета траектории полета мячика или прыгуна с трамплина, крутящего сальто над бассейном. Согласие между предсказаниями и результатами наблюдений за фактическим движением тел является поразительным. Этот успех обеспечивал теории Ньютона безоговорочную поддержку вплоть до первой половины XX в. Однако открытие Эйнштейном специальной теории относительности выдвинуло проблемы, ставшие непреодолимым препятствием для теории Ньютона.
Главной особенностью специальной теории относительности является существование абсолютного барьера для скорости, устанавливаемого скоростью света. Важно понимать, что этот предел относится не только к материальным телам, но также к сигналам и воздействиям любого рода. Не существует способа передать информацию или возмущение из одного места в другое со скоростью, превышающей скорость света. Конечно, в природе есть масса способов распространения возмущений со скоростью, меньшей скорости света. Например, наша речь и другие звуки передаются с помощью колебаний, распространяющихся в воздухе со скоростью около 330 м/с, что ничтожно мало по сравнению со скоростью света, равной 300 000 км/с. Эта разница скоростей становится очевидной, если наблюдать за бейсбольным матчем с мест, расположенных далеко от поля. Когда подающий бьет по мячу, звук достигает вас спустя несколько мгновений после того, как вы увидели удар. Похожие вещи происходят во время грозы. Хотя вспышка молнии и удар грома происходят одновременно, мы видим молнию раньше, чем слышим гром. Это снова является отражением значительной разницы в скоростях света и звука. Успех специальной теории относительности говорит нам, что обратная ситуация, когда какой-нибудь сигнал достигнет нас раньше, чем свет, излученный одновременно с этим сигналом, попросту невозможна. Ничто в мире не может обогнать фотоны.
Здесь и лежит камень преткновения. В теории тяготения Ньютона одно тело притягивает другое с силой, которая зависит только от масс этих тел и расстояния между ними. Эта сила никак не зависит от того, насколько долго тела находились рядом друг с другом. Это означает, что если их массы или расстояния между ними изменятся, то тела, согласно Ньютону, немедленно почувствуют изменение взаимного гравитационного притяжения. Например, ньютоновская теория тяго-тения утверждает, что если Солнце внезапно взорвется, то Земля, расположенная на расстоянии примерно 150 млн км от него, мгновенно сойдет со своей обычной эллиптической орбиты. Несмотря на то, что вспышка света от взрыва дойдет от Солнца до Земли только через восемь минут, в теории Ньютона сведения о том, что Солнце взорвалось, будут переданы на Землю мгновенно, посредством внезапного изменения силы тяготения, управляющей движением планеты.
Этот вывод находится в прямом противоречии со специальной теорией относительности, поскольку последняя уверяет, что никакая информация не может быть передана со скоростью, превышающей скорость света. Мгновенное распространение тяготения в максимально возможной степени нарушает это принцип.
Таким образом, в начале XX в. Эйнштейн осознал, что невероятно успешная теория тяготения Ньютона находится в противоречии со специальной теорией относительности. Уверенный в истинности специальной теории относительности, Эйнштейн, невзирая на огромное количество экспериментальных данных, подтверждающих теорию Ньютона, стал работать над новой теорией гравитации, которая была бы совместима со специальной теорией относительности. Это, в конечном счете, привело его к открытию общей теории относительности, в которой характер пространства и времени вновь претерпел поразительные изменения.
Еще до открытия специальной теории относительности был ясен один существенный недостаток ньютоновской теории тяготения. Хотя теория чрезвычайно точно предсказывала движение тел под действием силы тяготения, она ничего не говорила о том, что представляет собой тяготение. Иными словами, как получается, что два тела, разделенные расстоянием в сотни миллионов километров и более, тем не менее, оказывают влияние на движение друг друга? Каким образом тяготение выполняет свою миссию? Сам Ньютон вполне осознавал существование этой проблемы. По его собственным словам «…непостижимо, чтобы неодушевленная, грубая материя могла без посредства чего-либо нематериального действовать и влиять на другую материю без взаимного соприкосновения, как это должно бы происходить, если бы тяготение в смысле Эпикура было существенным и врожденным в материи. Предполагать, что тяготение является существенным, неразрывным и врожденным свойством материи, так что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, – это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах. Тяготение должно вызываться агентом, постоянно действующим по определенными законам. Является ли, однако, этот агент материальным или нематериальным, решать это я предоставил моим читателям»1).
Это говорит о том, что Ньютон принимал существование тяготения, и разрабатывал уравнения, которые с высокой точностью описывают его действие, но никогда не предлагал никакого механизма, объясняющего, как оно работает. Он оставил миру «руководство пользователя» по гравитации с описанием того, как ее «использовать». Физики, астрономы и инженеры успешно применяли эти инструкции для прокладки курса ракет к Луне, Марсу и другим планетам Солнечной систем, для прогноза солнечных и лунных затмений, для предсказания движения комет и т. п. Но внутренний механизм – содержимое «черного ящика» гравитации – Ньютон оставил под покровом тайны. Когда вы пользуетесь плеером для компакт-дисков или персональным компьютером, вы обычно находитесь в таком же состоянии неведения об их внутреннем устройстве. Коль скоро вы знаете, как обращаться с исправным устройством, ни вам, ни кому-либо другому не требуется знать, каким образом оно выполняет ваши задания. Но когда ваш плеер или персональный компьютер выходит из строя, возможность его починки решающим образом зависит от знания его внутреннего устройства. Аналогично Эйнштейносознал, что, несмотря на сотни лет экспериментального подтверждения ньютоновской теории, специальная теория относительности обнаружила едва уловимую внутреннюю «неисправность», а устранение этой неисправности потребует решить вопрос об истинном механизме тяготения.
В 1907 г., обдумывая эти вопросы за своим столом в патентном бюро швейцарского города Берна, Эйнштейн сумел нащупать центральную идею, которая, после ряда успехов и неудач, в конечном счете привела его к радикально обновленной теории тяготения. Предложенный Эйнштейном подход не просто восполнил пробелы в ньютоновской теории, но совершенно изменил наши представления о тяготении, и, что очень важно, оказался полностью совместимым со специальной теорией относительности.
Подход, предложенный Эйнштейном, имеет отношение к вопросу, который беспокоил нас на всем протяжении главы 2. Там мы интересовались, как выглядит мир для двух наблюдателей, двигающихся относительно друг друга с постоянной скоростью. Тщательно сравнивая точки зрения этих двух наблюдателей, мы получили ряд удивительных выводов о сущности пространства и времени. А что можно сказать о наблюдателях, находящихся в состоянии ускоренного движения? Точки зрения этих наблюдателей труднее поддаются анализу, чем в случае наблюдателей, степенно движущихся с постоянной скоростью. Тем не менее, можно поставить вопрос, существует ли способ разрешить эти трудности и осмыслить ускоренное движение в соответствие с новым уровнем понимания пространства и времени.
«Самая счастливая идея» Эйнштейна объясняет, как сделать это. Чтобы понять ее, вообразим, что сейчас 2050 г. и вы являетесь главным экспертом ФБР по взрывчатым веществам. К вам обращаются с отчаянной мольбой срочно исследовать объект, который, по-видимому, является бомбой изощренной конструкции, заложенной в самом центре Вашингтона. Поспешив на место действия и осмотрев бомбу, вы видите, что сбылись ваши самые худшие предчувствия – бомба является атомной и имеет такую мощность, что даже если поместить ее глубоко под землю или на дно океана, последствия от взрыва будут опустошительными. После внимательного изучения детонирующего устройства вы видите, что обезвредить его невозможно и, более того, оно содержит защиту нового типа. Бомба смонтирована на весах. Как только показания весов изменятся более чем на 50 % от того значения, которое они показывают сейчас, бомба взорвется. Изучив часовой механизм, вы видите, что в вашем распоряжении осталась всего неделя. От ваших действий зависит судьба миллионов людей – что же делать?
Итак, смирившись с тем, что на земле и под землей нет безопасного места, где можно было бы взорвать бомбу, вы приходите к выводу, что остается только один выход: необходимо запустить ее в космос, где взрыв не причинит ущерба никому. Вы высказываете эту идею на совещании вашей команды в ФБР, и почти немедленно молодой сотрудник перечеркивает этот план. «В вашем предложении есть серьезный изъян, – говорит ваш ассистент Исаак. – Когда устройство будет удаляться от Земли, его вес начнет уменьшаться, поскольку гравитационное притяжение со стороны Земли будет ослабевать. Это означает, что показания весов внутри устройства уменьшатся, что приведет к детонации задолго до того, как бомба удалится на безопасное расстояние». Прежде чем вы успеваете полностью осмыслить это возражение, в разговор вмешивается другой молодой человек. «На самом деле здесь есть еще одна проблема, которую нам следует обсудить, – заявляет ваш другой ассистент Альберт. – Она столь же важна, как та, на которую указал Исаак, но является более тонкой, поэтому следите внимательно за моим объяснением». Желая взять минуту на размышление, чтобы обдумать возражение Исаака, вы пытаетесь отмахнуться от Альберта, но если уж он начал говорить, остановить его невозможно.
«Для того чтобы запустить устройство в открытый космос, мы должны поместить его на ракету. Чтобы улететь в космическое пространство, ракета должна ускориться, поэтому показания на весах увеличатся, и взрыв снова произойдет преждевременно.Основание бомбы, которое стоит на весах, будет давить на весы сильнее, чем когда оно находится в покое. Это похоже на то, как ваше тело прижимается к сиденью автомобиля при разгоне. Бомба „вдавится" в весы точно так же, как ваша спина в спинку сидения. Под давлением показания весов увеличиваются, и это приведет к взрыву, как только увеличение превысит 50 %».
Вы благодарите Альберта за его комментарий, но мысленно откладываете его в сторону, поскольку по своим последствиям оно совпадает с замечанием Исаака, и безрадостно констатируете, что для того, чтобы убить идею, достаточно одного выстрела, и наблюдение Исаака, которое, несомненно, является правильным, уже сделало это. Без особой надежды вы спрашиваете, есть ли еще идеи. В этот момент Альберта посещает озарение. «Хотя, взвесив все еще раз, – продолжает он, – ваша идея вовсе не кажется мне безнадежной. Замечание Исаака о том, что сила тяжести уменьшается при подъеме в космическое пространство, означает, что показания весов будут уменьшаться. Мое наблюдение, состоящее в том, что ускорение ракеты при движении вверх заставит устройство давить на весы сильнее, означает, что показания весов будут увеличиваться. В итоге это означает, что в каждый момент следует поддерживать ускорение на таком уровне, чтобы эти два эффекта нейтрализовали друг друга! А именно, на ранних стадиях подъема, пока ракета ощущает полную мощь земного тяготения, она может ускоряться не очень сильно, так, чтобы оставаться в границах пятидесяти процентного допуска. По мере того, как ракета будет удаляться все дальше от Земли, а сила ее притяжения будет ослабевать, мы должны увеличить ускорение для того, чтобы скомпенсировать это ослабление. Увеличение показаний весов из-за ускорения может быть сделано в точности равным уменьшению показаний из-за ослабления гравитационного притяжения. Это означает, что в действительности можно сделать так, чтобы показания весов совсем не менялись!»
Предложение Альберта начинает постепенно до вас доходить. «Иными словами – говорите вы, – ускорение может быть заменой тяготения. Мы можем имитировать действие силы тяжести правильно подобранным ускоренным движением».
«Совершенно верно», – подтверждает Альберт.
«Итак, – продолжаете вы, – мы можем запустить бомбу в космос и, соответствующим образом регулируя ускорение ракеты, гарантировать, что показания весов не изменятся и бомба не взорвется до тех пор, пока не удалится на безопасное расстояние от Земли». Таким образом, если вы заставите гравитацию и ускорение играть друг против друга, используя для этого возможности ракетной техники XXI в., то сможете избежать катастрофы.
Осознание глубокой связи между гравитацией и ускоренным движением представляет собой главное озарение, снизошедшее на Эйнштейна в один счастливый день в патентном бюро Берна. Хотя эксперимент с бомбой уже высветил суть этой идеи, она заслуживает того, чтобы перефразировать ее в терминах, использованных в главе 2. Для этого вспомним, что если мы находимся в закрытом вагоне, не имеющем окон и не испытывающем ускорения, то не существует способа, с помощью которого мы могли бы определить скорость своего движения. Купе внутри будет продолжать выглядеть совершенно одинаково, и любые эксперименты дадут вам тождественные результаты независимо от скорости движения. Более того, не имея внешних ориентиров для сравнения, вы даже не сможете определить, движетесь ли вы вообще. С другой стороны, если вы ускоряетесь, то даже если доступная вам область ограничена внутренностью купе, вы почувствуете силу, действующую на ваше тело. Например, если кресло, в котором вы сидите, обращено вперед по ходу движения и прикручено к полу вагона, вы почувствуете силу, с которой спинка кресла будет давить на вас, совсем как в примере, приведенном Альбертом. Аналогично, если купе испытывает ускорение, направленное вверх, вы почувствуете силу, действующую на ваши ноги со стороны пола. Идея Эйнштейна состояла в том, что, оставаясь в закрытом купе, вы не сможете определить, когда на вас действует ускорение, а когдасила тяготения; если их величины совпадают, сила, создаваемая ускоренным движением, и сила, возникающая под действием гравитационного поля, неразличимы. Если ваше купе неподвижно стоит на поверхности Земли, вы чувствуете привычную силу, действующую на ваши ноги со стороны пола; точно такими же будут ощущения, если вы ускоренно движетесь вверх. Это та самая эквивалентность, которую Альберт использовал для решения проблемы с запуском в космос оставленной террористами бомбы. Если вагон опрокинется, вы почувствуете со стороны спинки кресла силу (не дающую вам упасть), которая будет такой, как если бы вагон ускорялся в горизонтальном направлении. Эйнштейн назвал неразличимость ускоренного движения и гравитации принципом эквивалентности. Этот принцип составляет основу общей теории относительности2.
Описание, приведенное выше, показывает, что общая теория относительности завершает работу, начатую специальной теорией относительности. Используя принцип относительности, специальная теория относительности провозглашает равноправие точек зрения наблюдателей: законы физики проявляются одинаковым образом для всех наблюдателей, находящихся в состоянии равномерного движения. Но это равноправие на самом деле является ограниченным, поскольку из него исключается огромное число точек зрения других наблюдателей, находящихся в состоянии ускоренного движения. Прозрение, пришедшее к Эйнштейну в 1907 г., показывает, как охватить все точки зрения – и тех, кто движется с постоянной скоростью, и тех, кто ускоряется, – в рамках одной изящной концепции. Поскольку нет различия между ускоренным пунктом наблюдения в отсутствии гравитационного поля и неускоренным пунктом наблюдения в присутствии гравитационного поля, можно выбрать это последнее описание и провозгласить, что все наблюдатели, независимо от состояния движения, могут утверждать, что они неподвижны, а «остальная часть мира движется рядом с ними», если они подходящим образом введут гравитационное поле в описание своего окружения. В этом смысле, благодаря включению гравитации, общая теория относительности гарантирует нам, что все возможные точки зрения являются равноправными. (Как мы увидим ниже, это означает, что различия между наблюдателями в главе 2, которые были основаны на ускоренном движении – как в случае с Джорджем, устремившимся за Грейс, включив свой ранцевый двигатель, и постаревшим меньше, чем она – допускают эквивалентное описание без ускорения, но с гравитацией.)
Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация – загадочное явление. Это грандиозная сила, пронизывающая жизнь космиса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным. Эйнштейн понял, что, благодаря взаимосвязи между этими явлениями, он может использовать понимание ускоренного движения в качестве могучего инструмента для достижения такого же понимания гравитации. Претворить эту стратегию в жизнь было нелегко даже для такого гения, как Эйнштейн, но, в конечном счете, этот подход принес свои плоды в виде общей теории относительности. Чтобы достичь этого, Эйнштейну пришлось выковать второе звено цепи, объединяющей гравитацию и ускоренное движение, – кривизну пространства и времени, – к обсуждению которой мы сейчас перейдем.
Эйнштейн работал над проблемой гравитации с предельной, часто чрезмерной интенсивностью. Примерно через пять лет после счастливого озарения в бернском патентном бюро, он писал физику Арнольду Зоммерфельду: «Сейчас я работаю исключительно над проблемой гравитации… одно могу сказать определенно – никогда в моей жизния не изнурял себя так, как сейчас… по сравнению с этой проблемой первоначальная (т. е. специальная) теория относительности кажется детской забавой»3.
Следующий ключевой прорыв, касающийся простого, но неочевидного следствия применения специальной теории относительности для установления связи между гравитацией и ускоренным движением, был сделан, по-видимому, в 1912 г. Чтобы понять этот шаг в исследованиях Эйнштейна, проще всего обратиться (так, вероятно, поступил и Эйнштейн) к конкретному примеру ускоренного движения4. Вспомним, что объект считается ускоренно движущимся, если он изменяет скорость или направление своего движения. Для простоты ограничимся ускоренным движением, в котором скорость остается постоянной, а изменяется только направление движения тела. Конкретно рассмотрим движение по кругу, которое можно увидеть на аттракционе Верхом на торнадо. В этом аттракционе вы становитесь внутрь большого круга, по краю которого расположена стенка, изготовленная из плексигласа, прижимаетесь спиной к этой стенке, и круг начинает вращаться с большой скоростью. Как при всяком ускоренном движении (вы можете ощутить его), вы почувствуете, что ваше тело отбрасывается по радиусу от центра вращения, а круговая плексигласовая стенка вдавливается в вашу спину, не давая вам вылететь с круга. (На самом деле, хотя это не относится к нашему разговору, вращательное движение «прилепляет» ваше тело к плексигласу с такой силой, что когда планка, на которой вы стоите, уходит из-под ног, вы не падаете, а остаетесь прижатым к стенке.) Если движение плавное, и вы закроете глаза, давление, которое будет действовать на вашу спину в результате вращения, – совсем как давление со стороны матраса в постели – почти способно создать иллюзию, что вы лежите. Слово «почти» связано с тем фактом, что вы продолжаете испытывать действие обычной, «вертикальной» гравитации, которая не дает вашему мозгу одурачить себя. Но если бы вам довелось кататься на этом аттракционе в открытом космосе, и если бы скорость вращения была соответствующей, вы бы почувствовали себя лежащим в обычной постели на Земле. Более того, если бы вы «встали» и попробовали бы прогуляться по внутренней поверхности вращающейся плексигласовой стенки, ваши ноги ощутили бы точно такое же давление, какое они испытывают на обычном полу. На самом деле, проекты космических станций предусматривают подобное вращение для создания искусственной силы тяжести в космическом пространстве.
Теперь, используя ускоренное движение во вращающемся аттракционе для имитации действия силы тяжести, можно, следуя Эйнштейну, посмотреть, как выглядят пространство и время для тех, кто находится на круге. Его рассуждения в приложении к нашей ситуации были бы такими. Мы, неподвижные наблюдатели, легко можем измерить длину окружности и радиус вращающегося круга. Например, чтобы измерить длину окружности, мы будем аккуратно прикладывать рулетку к ободу вращающегося круга; для измерения радиуса мы будем также аккуратно перемещать рулетку от оси вращения к внешнему краю круга. Как можно предположить, основываясь на школьном курсе геометрии, отношение эти двух величин будет равно 2p (около 6,28), в точности таким же, как для окружности, нарисованной на плоском листе бумаги. А как это будет выглядеть с точки зрения того, кто катается на этом аттракционе?
Чтобы узнать это, мы попросили Слима и Джима, которые как раз катаются на этом аттракционе, выполнить для нас несколько измерений. Мы бросили одну из наших рулеток Слиму, который отправился измерять длину окружности, а другую – Джиму, который будет измерять радиус. Чтобы увидеть все наилучшим образом, взглянем на круг с высоты птичьего полета, как показано на рис. 3.1. Мы снабдили снимок стрелками, показывающими мгновенное направление движения в каждой точке. Как только Слим начинает измерять длину окружности, нам, из положения сверху, сразу становится понятно, что он получит не то значение, которое получили мы. Когда он прикладывает рулетку к окружности, мы замечаем, что ее длина уменьшается.
Это не что иное, как обсуждавшееся в главе 2 лоренцево сокращение, которое связано с тем, что длина тела представляется уменьшившейся в направлении его движения. Уменьшение длины рулетки означает, что мы должны будем уложить ее, совмещая начало с концом, большее число раз, чтобы обойти весь круг. Так как Слим продолжает считать, что длина рулетки составляет один метр (поскольку между ним и его рулеткой нет относительного перемещения, он думает, что она имеет свою обычную длину в один метр), он измерит большую длину окружности, чем мы. (Если это кажется парадоксальным, вам может помочь примечание 5.)
Ну, а что насчет радиуса? Джим использует тот же метод определения радиуса, и нам, с высоты птичьего полета, видно, что он получит такое же значение, которое получили мы. Причина состоит в том, что его рулетка располагается не по мгновенному направлению движения круга (как было при измерении длины окружности). Она направлена под углом 90 градусов к направлению движения и поэтому не сокращается в направлении своей длины. Следовательно, Джим получит точно такое же значение величины радиуса, какое получили мы.
Но теперь, рассчитав отношение длины окружности колеса к его радиусу, Слим и Джим получат число, которое будет превышать полученное нами значение 2?, поскольку у них длина окружности оказалась больше, а радиус остался тем же самым. Что за чудеса? Как может быть, чтобы для какой-нибудь фигуры в форме окружности нарушалось установленное еще древними греками правило, согласно которому для любой окружности это отношение в точности равно 2p?
Вот объяснение Эйнштейна. Результат древних греков справедлив для окружностей, нарисованных на плоской поверхности. Но подобно тому, как кривые зеркала в парке развлечений искажают нормальную пространственную структуру вашего отражения, так и пространственная форма окружности исказится, если она будет нарисована на искривленной или деформированной поверхности: отношение длины окружности к радиусу для такой окружности, как правило, не будет равно 2p.
В качестве примера на рис. 3.2 приведены три окружности одинакового радиуса. Длины этих окружностей различны. Длина окружности (б), нарисованной на искривленной поверхности сферы, меньше длины окружности (а), нарисованной на плоской поверхности, несмотря на то, что они имеют одинаковый радиус. Искривленный характер поверхности сферы приводит к тому, что радиальные линии, проведенные из центра, слегка сходятся друг к другу, приводя к небольшому уменьшению длины окружности.
Длина окружности (в), нарисованной на седловидной искривленной поверхности, больше, чем длина окружности, изображенной на плоской поверхности. Свойства кривизны седловидной поверхности приводятк тому, что радиальные линии слегка расходятся, вызывая небольшое увеличение длины окружности. Эти наблюдения показывают, что отношение длины окружности к радиусу для (б) будет меньше, чем 2p, а для (в) – больше, чем 2p. Но отклонения от значения 2p, особенно в сторону увеличения, как в примере (в), – это как раз то, что было обнаружено в случае вращающегося аттракциона. Подобные наблюдения привели Эйнштейна к идее, что нарушение «обычной», евклидовой геометрии объясняется кривизной пространства. Плоская геометрия древних греков, которой тысячи лет учат школьников, попросту не применима к объектам на вращающемся круге. Вместо этого здесь имеет место ее обобщение на случай искривленного пространства, схематически показанное на рис.3.2в5).
Итак, Эйнштейн понял, что установленные древними греками привычные пространственные геометрические отношения, которые верны для «плоских» пространственных фигур, таких, как окружность на плоском столе, не выполняются с точки зрения наблюдателя, испытывающего ускорение. Конечно, мы рассмотрели здесь только один, конкретный вид ускоренного движения, но Эйнштейн показал, что аналогичный результат – искривление пространства – справедлив для всех случаев ускоренного движения.
В действительности, ускоренное движение приводит не только к искривлению пространства, но и к аналогичному искривлению времени. (Исторически Эйнштейн сначала сосредоточил внимание на кривизне времени, и только потом осознал важность кривизны пространства6.) То, что время также подвергается искривлению, неудивительно – в главе 2 мы уже видели, что специальная теория относительности провозглашает союз пространства и времени. Это слияние было подытожено поэтическими словами Минковского, который на лекции по специальной теории относительности в 1908 г. сказал: «Отныне пространство и время, рассматриваемые отдельно и независимо, обращаются в тени и только их соединение сохраняет самостоятельность»7). Пользуясь более приземленным, но столь же вольным языком, можно сказать, что сплетая пространство и время в единую ткань пространства-времени, специальная теория относительности провозглашает: «То, что истинно для пространства, то истинно и для времени». Однако здесь возникает вопрос. Мы можем представить себе искривленное пространство, зная, как искривлена его форма, но что мы имеем в виду, говоря о кривизне времени?
Для того чтобы нащупать ответ, еще раз посадим Слима и Джима на аттракцион и попросим их провести следующий эксперимент. Слим будет стоять на краю радиального отрезка спиной к кругу, а Джим будет медленно ползти к нему вдоль этого радиуса от центра круга. Через каждые несколько метров Джим будет останавливаться, и они будут сравнивать показания своих часов. Что они увидят? Наблюдая со своей позиции с высоты птичьего полета, мы снова сможем предсказать ответ. Их часы будут расходиться в показаниях. Мы пришли к этому выводу потому, что увидели, что Слим и Джим движутся с разной скоростью – при движении на аттракционе чем дальше от центра вы находитесь, тем большее расстояние должны пройти для того, чтобы совершить один оборот и, следовательно, тем быстрее вы движетесь. Но, согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее идут ваши часы – из этого мы заключаем, что часы Слима будут идти медленнее, чем часы Джима. Далее, Слим и Джим обнаружат, что по мере того как Джим будет приближаться к Слиму, его часы будут идти все медленнее, и скорость их хода будет становиться такой же, как у часов Слима. Это отражает тот факт, что по мере приближения Джима к краю круга, его скорость приближается к скорости Слима.
Мы приходим к выводу, что для наблюдателей на вращающемся круге, таких как Слим и Джим, скорость течения времени зависит от их положения – в нашем случае от их расстояния до центра круга. Это является иллюстрацией того, что мы понимаем под кривизной времени. Время искривлено, если скорость его хода изменяется от одной точки к другой. Важно подчеркнуть, что Джим заметит кое-что еще, когда будет ползти вдоль радиуса. Он почувствует возрастаю-щую силу, выталкивающую его с круга, поскольку не только скорость, но и ускорение увеличиваются по мере удаления от центра круга. Используя наш аттракцион, мы видим, что большее ускорение связано с более сильным замедлением хода часов, – т. е. большее ускорение приводит к более значительному искривлению времени.
Эти наблюдения дали возможность Эйнштейну сделать заключительный шаг. Поскольку он уже показал, что гравитацию и ускоренное движение нельзя по существу различить, и поскольку, как он показал теперь, ускоренное движение связано с искривлением пространства и времени, он сделал следующее предположение о внутреннем содержании «черного ящика» гравитации, механизме, с помощью которого действует гравитация. Согласно Эйнштейну, гравитация представляет собой искривление пространства и времени. Посмотрим, что это означает.
Чтобы почувствовать, в чем суть нового представления о гравитации, рассмотрим типичную ситуацию, в которой планета типа нашей Земли вращается вокруг звезды, похожей на наше Солнце. В ньютоновской теории гравитации Солнце удерживает Землю на некоей неопределяемой «привязи», которая каким-то образом мгновенно преодолевает огромные расстояния в пространстве и захватывает Землю (аналогичным образом и Земля захватывает Солнце). Эйнштейн предложил новую концепцию того, что происходит. Нам будет удобнее обсуждать подход Эйнштейна, имея конкретную наглядную модель пространства-времени, которой было бы удобно манипулировать. Для этого сделаем два упрощения. Во-первых, на какое-то время забудем о времени и сконцентрируемся исключительно на наглядной модели пространства. Позже мы вновь включим время в наше обсуждение. Во-вторых, для того, чтобы иметь возможность рисовать модели и размешать рисунки на страницах этой книги, мы часто будем использовать двумерные аналоги трехмерного пространства. Большинство выводов, которые мы получим, работая с моделями более низких размерностей, непосредственно применимо к физической трехмерной среде, поэтому более простые модели представляют собой прекрасные средства для объяснения и обучения.
Используя эти упрощения, мы изобразили на рис. 3.3 двумерную модель области нашей Вселенной.
Координатная сетка удобна для указания положения, точно так же, как сеть улиц позволяет описать местонахождение в городе. При задании адреса в городе, кроме положения на двумерной сетке улиц, указывается также положение по вертикали, например, указание этажа. Для облегчения визуального восприятия будем отбрасывать третье измерение в наших двумерных моделях.
Эйнштейн высказал предположение, что в отсутствие материи и энергии пространство будет плоским. На языке двумерных моделей это означает, что «форма» пространства должна быть плоской, подобно поверхности гладкого стола, как показано на рис. 3.3. Это изображение пространственной структуры нашей Вселенной, которое было общепринятым в течение тысяч лет. Но что произойдет с пространством, если в нем присутствует массивный объект, подобный Солнцу? До Эйнштейна ответом на этот вопрос было слово «ничего»: пространство (и время) считались инертной средой, сценой, на которой события в жизни Вселенной развивались сами по себе. Однако цепочка рассуждений Эйнштейна, которую мы рассмотрели выше, приводит к другому выводу.
Массивное тело, подобно нашему Солнцу, а на самом деле любое тело, оказывает гравитационное воздействие на другие тела. В примере с бомбой террориста мы установили, что действие гравитационных сил неотличимо от действия ускоренного движения. Пример с аттракционом Верхом на торнадо показал, что математическое описание ускоренного движения требует введения искривленного пространства. Эта связь между гравитацией, ускоренным движением и кривизной пространства привела Эйнштейна к блестящей догадке: присутствие массивного тела, подобного нашему Солнцу, приводит к тому, что структура пространства вокруг этого тела искривляется, как показано на рис. 3.4.
Полезная и часто используемая аналогия состоит в том, что структура пространства деформируется в присутствии массивных тел, таких как наше Солнце, подобно резиновой пленке, на которую положили шар для боулинга.
Согласно этой радикальной гипотезе, пространство не является просто пассивной ареной событий во Вселенной; форма пространства изменяется под влиянием присутствующих в нем тел.
Это искривление, в свою очередь, влияет на другие тела, движущиеся вблизи Солнца, которые теперь будут перемещаться по деформированному пространству. Используя аналогию с резиновой пленкой и шаром для боулинга, можно сказать, что если мы поместим на пленку шарик и придадим ему начальную скорость, его траектория будет зависеть от того, присутствует ли в центре пленки массивный шар для боулинга. Если шара для боулинга там нет, резиновая пленка будет плоской, и шарик будет двигаться по прямой. Если шар для боулинга присутствует, он будет искривлять пленку, и шарик будет двигаться по искривленной траектории. Если мы придадим шарику соответствующую скорость и направим его в соответствующем направлении, он будет совершать периодическое движение вокруг шара для боулинга (если игнорировать действие сил трения), т.е. фактически «выйдет на орбиту». Наш язык способствует применению этой аналогии к гравитации.
Солнце, подобно шару для боулинга, искривляет структуру окружающего его пространства, а движение Земли, как и движение шарика, определяется этой кривизной. Если скорость и направление движения Земли имеют подходящие значения, она, подобно шарику, будет вращаться вокруг Солнца. Это влияние кривизны на движение Земли, показанное на рис. 3.5, и есть то, что мы обычно называем гравитационным воздействием Солнца.
Разница состоит в том, что в отличие от Ньютона Эйнштейн указал механизм, с помощью которого действует гравитация. Этим механизмом является кривизна пространства. С позиций Эйнштейна, гравитационная привязь, удерживающая Землю на орбите, не связана с каким-то мистическим мгновенным воздействием, оказывае-мым Солнцем; на самом деле это кривизна структуры пространства, вызванная присутствием Солнца.
Такая картина позволяет по-новому взглянуть на две лажные особенности гравитации. Во-первых, чем массивнее будет шар для боулинга, тем сильнее он будет деформировать пленку. Так же и в эйнштейновской модели гравитации – чем массивнее объект, тем более сильно он искривляет окружающее пространство. Это означает, в точном соответствии с экспериментальными фактами, что чем массивнее объект, тем сильнее его гравитационное воздействие на другие тела. Во-вторых, так же как деформация резиновой пленки, вызванная шаром для боулинга, становится все меньше по мере удаления от шара, так и кривизна пространства, созданная присутствием массивного тела, уменьшается при увеличении расстояния от него. Это опять же согласуется с нашим пониманием гравитации, которая ослабевает при увеличении расстояния между объектами.
Здесь важно помнить, что шарик сам искривляет резиновую пленку, хотя и слабо. Земля, которая сама является массивным телом, тоже искривляет пространство, хотя и в гораздо меньшей степени, чем Солнце. Это объясняет с позиций общей теории относительности то, почему Земля удерживает на орбите Луну, а также не дает нам с вами улететь в космическое пространство. Когда парашютист совершает свой прыжок, он скользит вниз по впадине в пространстве, образовавшейся под действием массы Земли. Более того, каждый из нас, как и любое массивное тело, также искривляет пространство вблизи своего тела, хотя из-за относительной малости массы человеческого тела эти впадины очень малы.
В заключение заметим, что Эйнштейн был полностью согласен с утверждением Ньютона: «Гравитация должна передаваться каким-то посредником», и принял вызов Ньютона, который оставил определение этого посредника «на усмотрение моих читателей». Согласно Эйнштейну, посредником гравитации является структура пространства.
Аналогия с резиновой пленкой и шаром для боулинга полезна, поскольку она дает наглядный образ, с помощью которого можно реально понять, что означает искривление пространственной структуры Вселенной. Физики часто используют эту и другие подобные ей аналогии для выработки интуитивных представлений о гравитации и кривизне. пространства. Однако, несмотря на полезность, аналогия с резиновой пленкой и шаром для боулинга несовершенна, и мы хотим для полной ясности привлечь внимание читателя к некоторым ее недостаткам.
Во-первых, когда Солнце вызывает искривление структуры пространства, это не связано с тем, что оно «тянет пространство вниз» в результате действия силы тяжести, как это происходит в случае с шаром для боулинга. В случае с Солнцем здесь нет других объектов, которые «тянут пространство». Напротив, как учит Эйнштейн, кривизна пространства и есть тяготение. Пространство реагирует искривлением на присутствие объекта, имеющего массу. Аналогично, Земля остается на орбите не потому, что гравитационное притяжение какого-то другого внешнего тела направляет ее по ложбине в искривленной структуре пространства, как это происходит с шариком на искривленной резиновой пленке. Как показал Эйнштейн, тела движутся в пространстве (или, точнее, в пространстве-времени) по кратчайшим возможным путям – «по наиболее легким путям» или, иными словами, «по путям наименьшего сопротивления». Если пространство искривлено, такие пути тоже будут искривленными. Таким образом, хотя модель, состоящая из резиновой пленки и шара для боулинга, дает хорошую наглядную аналогию, показывающую, как объекты, подобные Солнцу, искривляют пространство вокруг себя и тем самым оказывают влияние на движение других тел, физический механизм этих деформаций совершенно иной. Модель обращается к нашей интуиции в рамках традиционных ньютоновских представлений, тогда как для объяснения механизма используется понятие кривизны пространства. Второй недостаток этой аналогии связан с тем, что пленка является двумерной. На самом деле Солнце (как и все другие массивные тела) искривляют окружающее их трехмерное пространство, но это труднее наглядно представить. На рис. 3.6 сделана попытка изобразить это. Все пространство, окружающее Солнце, «снизу», «с боков» и «сверху» подвергается деформации, и на рис. 3.6 схематически показана часть такого искривленного пространства.
Тело, подобное Земле, движется сквозь трехмерное пространство, искривленное в результате присутствия Солнца. При взгляде на рисунок у вас могут возникнуть вопросы, – например, почему Земля не ударяется о «вертикальную часть» показанного на нем искривленного пространства? Следует, однако, иметь в виду, что пространство, в отличие от резиновой пленки, не образует сплошного барьера. Криволинейная сетка, показанная на рисунке, представляет собой всего лишь набор сечений трехмерного искривленного пространства, в которое Земля, мы с вами и все остальное погружены, и в котором все это свободно движется. Возможно, вам покажется, что это еще более усложняет картину; у вас может возникнуть вопрос: почему мы не ощущаем пространства, если погружены в его структуру? Но мы ощущаем его. Мы ощущаем силу тяжести, а пространство представляет собой среду, которая передает гравитационное воздействие. Выдающийся физик Джон Уилер часто говорил, описывая гравитацию, что «масса управляет пространством, говоря ему, как искривляться, а пространство управляет массой, говоря ей, как двигаться»8.
Третьим недостатком этой аналогии является то, что мы игнорировали временное измерение. Мы сделали это для большей наглядности: хотя специальная теория относительности и провозглашает, что мы должны рассматривать временное измерение наравне с пространственными, «увидеть» время значительно сложнее. Однако, как видно из примера с аттракционом Верхом на торнадо, ускорение и, следовательно, гравитация, искривляют и пространство, и время. (В действительности, использование математического аппарата общей теории относительности показывает, что при относительно медленном движении тел, например, при вращении планеты вокруг обычной звезды, подобной Солнцу, искривление времени на самом деле оказывает гораздо меньшее влияние на движение планеты, чем искривление пространства.) Мы вернемся к обсуждению искривления времени позже.
Если вы будете помнить об этих трех важных замечаниях, то использование наглядной модели, состоящей из резиновой пленки и шара для боулинга, в качестве интуитивного обобщения предложенного Эйнштейном нового взгляда на гравитацию, является вполне приемлемым.
Введя пространство и время в качестве динамических объектов, Эйнштейн создал ясный концептуальный образ того, как устроено тяготение. Главная проблема, однако, состоит в том, разрешает ли новая формулировка гравитационного взаимодействия то противоречие со специальной теорией относительности, которым страдала теория тяготения Ньютона. Да, разрешает. И снова аналогия с резиновой пленкой поможет понять основную идею. Представим себе, что у нас есть шарик, который катится по прямой линии по поверхности плоской пленки в отсутствие шара для боулинга. Если поместить шар для боулинга на пленку, движение шарика изменится, но не мгновенно. Если бы мы сняли эту последовательность событий на видеопленку и просмотрели ее в замедленном темпе, мы бы увидели, что возмущение, вызванное появлением шара для боулинга, распространяется подобно волнам в пруду и, в конце концов, достигает места, в котором находится шарик. Спустя короткое время переходные колебания резиновой пленки затухнут, и она перейдет в стационарное искривленное состояние.
То же самое справедливо и для структуры пространства. При отсутствии масс пространство является плоским, и небольшое тело будет находиться в состоянии безмятежного покоя или двигаться с постоянной скоростью. Когда на сцене появляется большая масса, пространство искривляется, – но, как и в случае с пленкой, деформация не будет мгновенной. Она будет распространяться в стороны от массивного тела и, в конце концов, придет в установившееся состояние, передающее гравитационное притяжение нового тела. В нашей аналогии возмущение распространяется по резиновой пленке со скоростью, зависящей от характеристик материала, из которого изготовлена пленка. Эйнштейн сумел рассчитать скорость, с которой распространяется возмущение структуры Вселенной в реальных условиях. Оказалось, что она в точности равна скорости света. Это означает, например, что в рассмотренном выше гипотетическом примере, когда гибель Солнца оказывает влияние на судьбу Земли ввиду изменения их взаимного гравитационного притяжения, это влияние не будет мгновенным. Когда тело изменяет свое положение или даже взрывается, оно вызывает изменение в деформированном состоянии структуры пространства-времени, которое распространяется во все стороны со скоростью света, в полном соответствии с устанавливаемым специальной теорией относительности пределом для космических скоростей. Таким образом, мы на Земле увидим гибель Солнца в тот самый момент, когда ощутим изменения гравитационного притяжения спустя примерно восемь минут после взрыва Солнца. Тем самым формулировка Эйнштейна разрешает конфликт – гравитационные возмущения не отстают от фотонов, но и не опережают их.
Картинки, которые мы видим на рис. 3.2, 3.4 и 3.6, иллюстрируют сущность того, что означает «искривленное пространство». Кривизна деформирует форму пространства. Физики пытались создать аналогичные образы для того, чтобы продемонстрировать смысл «искривленного времени», но они оказались гораздо сложнее для восприятия, поэтому мы не будем их здесь приводить. Вместо этого последуем примеру Слима и Джима из аттракциона Верхом на торнадо и попытаемся осознать ощущение искривленности времени, обусловленной гравитацией.
Для этого снова посетим Джорджа и Грейс, которые находятся уже не во мраке пустого космического пространства, а где-то на окраине Солнечной системы. Оба они все еще носят на своих скафандрах большие цифровые часы, которые мы когда-то синхронизировали. Для простоты не станем учитывать влияние планет и будем рассматривать только гравитационное поле Солнца. Далее, представим себе, что космический корабль, зависший около Джорджа и Грейс, размотал длинный трос, конец которого достигает окрестностей солнечной поверхности. С помощью этого троса Джордж медленно перебирается ближе к Солнцу. По пути он периодически останавливается, чтобы сравнить темп хода времени на его часах и на часах Грейс. Искривление времени, предсказываемое общей теорией относительности Эйнштейна, означает, что по мере того, как он будет испытывать все более сильное воздействие гравитационного поля, его часы будут все больше отставать от часов Грейс. Иными словами, чем ближе он будет к Солнцу, тем медленнее будут идти его часы. Именно в этом смысле гравитация деформирует не только пространство, но и время.
Вы должны были заметить, что в отличие от случая, рассмотренного в главе 2, когда Джордж и Грейс находились в пустом пространстве, перемещаясь относительно друг друга с постоянной скоростью, сейчас междуними нет симметрии. Джордж, в отличие от Грейс, ощущает, что сила тяжести становится все сильнее – ему приходится держаться за трос все крепче, чтобы не дать Солнцу притянуть себя. Оба согласны с тем, что часы Джорджа идут медленнее. Их точки зрения уже не являются «одинаково равноправными», что позволяло им обмениваться ролями и менять выводы на противоположные. На самом деле, ситуация схожа с той, с которой мы столкнулись в главе 2, когда Джордж испытал ускорение, включив ранцевый двигатель для того, чтобы догнать Грейс. Тогда ускорение Джорджа привело к тому, что его часы определенно стали идти медленнее, чем часы Грейс. Поскольку теперь мы знаем, что ощущение ускоренного движения совпадает с ощущением воздействия гравитационной силы, в теперешнем положении Джорджа, перебирающегося по тросу, действует тот же самый принцип, и мы снова видим, что часы Джорджа и все события в его жизни замедляются по сравнению с ходом времени у Грейс.
В гравитационном поле, подобном тому, которое существует на поверхности рядовой звезды вроде нашего Солнца, замедление темпа хода часов будет небольшим. Если Грейс находится на расстоянии миллиарда километров от Солнца, то когда Джордж будет в нескольких километрах от поверхности нашего светила, темп хода его часов составит примерно 99,9998 % темпа хода часов Грейс. Такое замедление очень мало9). Однако если Джордж будет спускаться по тросу, который висит над поверхностью нейтронной звезды, масса которой примерно равна массе Солнца, а плотность вещества превышает солнечную примерно в миллион миллиардов раз, сильное гравитационное поле этой звезды замедлит темп хода его часов до 76 % темпа хода часов Грейс. Еще более сильные гравитационные поля, подобные тем, которые имеют место на внешней поверхности черных дыр (они обсуждаются ниже), могут замедлить ход времени еще сильнее. Более сильные гравитационные поля вызывают более сильное искривление времени.
Большинство из тех, кому приходится изучать общую теорию относительности, бывают очарованы ее эстетической привлекательностью. Путем замены холодного, механистического взгляда Ньютона на пространство, время и тяготение на динамическое и геометрическое описание, включающее искривленное пространство-время, Эйнштейн сумел «вплести» тяготение в фундаментальную структуру Вселенной. Перестав быть структурой, наложенной дополнительно, гравитация стала неотъемлемой частью Вселенной на ее наиболее фундаментальном уровне. Вдохнув жизнь в пространство и время, позволив им искривляться, деформироваться и покрываться рябью, мы получили то, что обычно называется тяготением.
Если оставить в стороне эстетическое совершенство, конечным подтверждением справедливости физической теории является ее способность объяснять и точно предсказывать физические явления. Теория гравитации Ньютона блестяще выдерживала это испытание с момента ее появления в конце XVII в. и до начала XX столетия. Применительно к подбрасываемым в воздух мячам, телам, падающим с наклонных башен, кометам, кружащимся вокруг Солнца, или планетам, вращающимся по своим орбитам, теория Ньютона всегда давала чрезвычайно точное объяснение всем наблюдениям и предсказаниям, которые бесчисленное количество раз проверялись в самых разных условиях. Как мы уже подчеркивали, причины появления сомнений в этой необычайно успешной с экспериментальной точки зрения теории состояли в том, что согласно ей гравитационное взаимодействие передается мгновенно, а это противоречит специальной теории относительности.
Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично,расхождения между общей теорией относительности Эйнштейна – теорией гравитации, совместимой со специальной теорией относительности, – и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них10).
Мы любуемся звездами по ночам, но они, конечно, остаются на небе и днем. В это время мы обычно не видим их, потому что их далекие, точечные огни затмеваются светом Солнца. Однако во время солнечных затмений Луна временно заслоняет часть света, идущего си Солнца, и удаленные звезды становятся видимыми и днем. Тем не менее, присутствие Солнца продолжает оказывать влияние на испущенный ими свет. Свет от некоторых отдаленных звезд на своем пути к Земле должен пройти вблизи Солнца. Общая теория относительности Эйнштейна утверждает, что Солнце искривляет пространство и время, и что эта деформация оказывает влияние на траекторию идущего от звезд света. В конце концов, фотоны, излученные далекими звездами, путешествуют по Вселенной, и если ее структура искривлена, это окажет влияние на движение фотонов, также как и на движение любого материального тела. Искривление траектории будет максимальным для тех лучей, которые проходят вблизи поверхности Солнца на своем пути к Земле. Такие лучи обычно полностью затмеваются светом Солнца, но во время солнечных затмений их можно увидеть.
Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению видимого положения звезды. Это смещение может быть точно измерено путем сравнения видимого положения звезды по сравнению с ее истинным положением, известным по результатам ночных наблюдений звезды (в отсутствие отклоняющего влияния Солнца), полученным с интервалом примерно в полгода до или после затмения, когда Земля находится в соответствующем положении. В ноябре 1915 г. Эйнштейн, используя разработанную им новую теорию гравитации для расчета угла, на который должен отклониться луч света от звезды, прошедший рядом с поверхностью Солнца, получил значение 0,00049 градуса (1,75 угловых секунд, где одна угловая секунда равна 1/3 600 градуса). Этот крошечный угол равен углу раствора диафрагмы, сфокусированной на двадцатипятицентовой монетке в трех километрах от нее. Однако измерение столь малого угла было уже под силу технике тех дней. По просьбе сэра Фрэнка Дайсона, директора Гринвичской обсерватории, сэр Артур Эддингтон, известный астроном и секретарь Королевского астрономического общества Англии, организовал экспедицию на остров Принсипе, расположенный у западного побережья Африки, для проверки предсказания Эйнштейна в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г.
6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе – революционном пересмотре ранее существовавших понятий пространства и времени – вышладалеко за пределы научного сообшества, сделав Эйнштейна знаменитым во всем мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал: «Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!»11). Это было звездным часом Эйнштейна.
За годы, прошедшие со времени этого эксперимента, подтверждение общей теории относительности, сделанное Эддингтоном, неоднократно подвергалось критическому анализу. Многочисленные сложности и тонкости, связанные с измерениями, затрудняют их воспроизведение и ставят под вопрос достоверность первоначальных результатов. Однако за последние 40 лет были выполнены разнообразные эксперименты с использованием последних достижений современной техники. Эти эксперименты предназначались для проверки различных аспектов общей теории относительности. Все предсказания общей теории относительности получили подтверждение. Сегодня не существует сомнений, что модель гравитации, предложенная Эйнштейном, не только совместима со специальной теорией относительности, но и дает более точное совпадение с экспериментальными данными, чем теория Ньютона.
Если эффекты специальной теории относительности становятся наиболее очевидными при больших скоростях движения тел, то общая теория относительности выходит на сцену, когда тела имеют очень большую массу и вызывают сильное искривление пространства и времени. Рассмотрим два примера.
Первым из них является открытие, сделанное во время Первой мировой войны немецким астрономом Карлом Шварцшильдом, когда он, находясь в 1916 г. на русском фронте, в перерывах между расчетом траекторий артиллерийских снарядов знакомился с достижениями Эйнштейна в области гравитации. Удивительно, что спустя всего несколько месяцев после того, как Эйнштейн нанес завершающие мазки на полотно обшей теории относительности, Шварцшильд сумел, используя эту теорию, получить полную и точную картину того, как искривляются пространство и время в окрестности идеально сферической звезды. Шварцшильд послал полученные им результаты с русского фронта Эйнштейну, который по его поручению представил их Прусской академии.
Помимо подтверждения и математически точного расчета искривления, которое мы схематически показали на рис. 3.5, работа Шварцшильда – известная в настоящее время под названием «решения Шварцшильда» – выявила одно поразительное следствие общей теории относительности. Было показано, что если масса звезды сосредоточена в пределах достаточно малой сферической области (когда отношение массы звезды к ее радиусу не превосходит некоторого критического значения), то результирующее искривление пространства-времени будет столь значительным, что никакой объект (включая свет), достаточно приблизившийся к звезде, не сможет ускользнуть из этой гравитационной ловушки. Поскольку даже свет не сможет вырваться из таких «сжатых звезд», первоначально они получили название темных, или замороженных, звезд.(Это название принадлежит советским ученым Я. Б. Зельдовичу и И. Д. Новикову. – Прим. ред) Более броское название было предложено годы спустя Джоном Уилером, который назвал их черными дырами – черными, потому что они не могут излучать свет, и дырами, потому что любой объект, приблизившийся к ним на слишком малое расстояние, никогда не возвращается назад. Это название прочно закрепилось и устоялось.
Решение Шварцшильда иллюстрируется на рис. 3.7. Хотя черные дыры известны своей «прожорливостью», тела, которые проходят мимо них на безопасном расстоянии, отклоняются точно так же, как они отклонились бы под действием обычной звезды, и следуют дальше своей дорогой. Но тела любой природы, подошедшие слишком близко, ближе, чем на расстояние, которое называется горизонтом событий черной дыры, приговорены – они будут неуклонно падать к центру черной дыры, подвергаясь действию все более интенсивных и становя щихся, в конце концов, разрушительными гравитационных деформаций.
Если, например, вы подплываете к центру черной дыры ногами вперед, то при пересечении горизонта событий вы будете ощущать растущее чувство дискомфорта. Гравитационное притяжение черной дыры возрастет столь значительно, что оно будет притягивать ваши ноги гораздо сильнее, чем голову (ведь ноги будут несколько ближе к центру черной дыры, чем голова), настолько сильно, что сможет быстро разорвать ваше тело на куски.
Если же вы будете благоразумнее в странствиях в окрестностях черной дыры и позаботитесь о том, чтобы не пересекать ее горизонт событий, то можно использовать черную дыру для замечательного трюка. Представим, например, что вы обнаружили черную дыру, масса которой в 1000 раз превышает массу Солнца, и спускаетесь на тросе, точно так же, как Джордж спускался на Солнце, до высоты 3 см над горизонтом событий. Как мы уже отмечали, гравитационные поля вызывают искривление времени, это означает, что ваше путешествие во времени замедлится. В действительности, поскольку черные дыры имеют столь сильные гравитационные поля, ход вашего времени замедлится очень сильно. Ваши часы будут идти примерно в десять тысяч раз медленнее, чем часы вашего друга, оставшегося на Земле. Если вы провисите над горизонтом событий черной дыры в таком положении один год, а потом вскарабкаетесь по тросу назад на ожидающий вас неподалеку космический корабль для короткого, но приятного путешествия домой, то по возвращении вы обнаружите, что с момента вашего отбытия прошло более десяти тысяч лет. Вы можете использовать черную дыру в качестве своего рода машины времени, которая позволит вам попасть в отдаленное будущее Земли.
Чтобы почувствовать всю грандиозность масштабов этих явлений, отметим, что звезда массой, равной массе Солнца, станет черной дырой, если ее радиус будет составлять не наблюдаемое значение (около 700 000 км), а всего лишь около 3 км. Вообразите, что все наше Солнце сжалось до размеров Манхэттена. Чайная ложка вещества такого сжатого Солнца будет весить столько же, сколько гора Эверест. Чтобы сделать черной дырой нашу Землю, мы должны сжать ее в шарик радиусом менее сантиметра. В течение долгого времени физики скептически относились к возможности существования таких экстремальных состояний материи, многие из них считали, что черные дыры являются всего лишь издержками разгулявшегося воображения перетрудившихся теоретиков.
Однако в течение последнего десятилетия накопилось достаточно много наблюдательных данных, подтверждающих существование черных дыр. Конечно, поскольку они являются черными, их нельзя наблюдать непосредственно, исследуя небосвод с помощью телескопа. Вместо этого астрономы пытаются обнаружить черные дыры по аномальному поведению обычных излучающих свет звезд, расположенных поблизости от горизонтов событий черных дыр. Например, когда частицы пыли и газа из внешних слоев находящихся по соседству с черной дырой обычных звезд устремляются в направлении горизонта событий черной дыры, они разгоняются почти до световой скорости. При таких скоростях трение в газопылевом водовороте засасываемого вещества приводит к выделению огромного количества тепла, заставляющего газопылевую смесь светиться, излучая обычный видимый свет и рентгеновское излучение. Поскольку это излучение генерируется вне горизонта событий,оно может избежать попадания в черную дыру. Это излучение распространяется в пространстве, оно может непосредственно наблюдаться и изучаться. Общая теория относительности детально предсказывает характеристики такого рентгеновского излучения; наблюдение этих предсказанных характеристик дает убедительные, хотя и косвенные подтверждения существования черных дыр. Например, имеется все больше свидетельств в пользу того, что очень массивная черная дыра, масса которой в два с половиной миллиона раз превосходит массу нашего Солнца, расположена в центре нашей Галактики. Но даже эти прожорливые черные дыры бледнеют по сравнению с теми, которые, по-мнению астрономов, расположены в центрах рассеянных по всему космосу сияющих ошеломляюще ярким светом квазаров. Это черные дыры, массы которых в миллиарды раз превосходят массу Солнца.
Шварцшильд умер всего через несколько месяцев после того, как нашел свое решение. Он умер от кожного заболевания, которым заразился на русском фронте. Ему было 42 года. Его трагически краткое знакомство с теорией гравитации Эйнштейна открыло одну из наиболее ярких и таинственных граней жизни Вселенной.
Второй пример, который позволил общей теории относительности нарастить мускулы, относится к возникновению и эволюции всей Вселенной. Как мы уже видели, Эйнштейн показал, что пространство и время реагируют на присутствие массы и энергии. Эта деформация пространства-времени оказывает влияние на движение других космических тел, оказавшихся поблизости от образовавшегося искривления. Точная траектория движения этих тел зависит от их собственных массы и энергии, которые, в свою очередь, оказывают влияние на кривизну пространства-времени, влияющую на движение этих тел, и так до бесконечности. Используя уравнения общей теории относительности, основанные на достижениях в описании геометрии искривленного пространства, которых добился великий математик XIX в. Георг Бернхард Риман (подробнее мы расскажем о нем ниже), Эйнштейн сумел количественно описать взаимную эволюцию пространства, времени и материи. К его великому изумлению, применение этих уравнений не к изолированной системе (такой, как планета или комета, обращающаяся вокруг Солнца), а к Вселенной в целом, привело к поразительному выводу: общий пространственный размер Вселенной должен изменяться с течением времени. Иными словами, Вселенная либо расширяется, либо сжимается, но никогда не остается в неизменном состоянии. И это явственно следовало их уравнений общей теории относительности.
Это было слишком даже для Эйнштейна. Такой вывод опрокидывал общепринятые интуитивные представления о сущности пространства и времени, сформировавшиеся в течение тысяч лет под влиянием повседневного опыта. Даже такой радикальный мыслитель не смог отказаться от представлений о вечно существующей и неизменной Вселенной. По этой причине Эйнштейн пересмотрел свои уравнения и модифицировал их, добавив дополнительный член, ставший известным как космологическая постоянная, который позволял избежать такого вывода и возвращал нас в комфортные условия статической Вселенной. Однако 12 лет спустя, проводя тщательные наблюдения за отдаленными галактиками, американский астроном Эдвин Хаббл экспериментально установил, что Вселенная расширяется. История, закрепленная ныне в анналах науки, свидетельствует о том, что Эйнштейн вернул первоначальную форму своим уравнениям, признав их временную модификацию величайшим заблуждением в своей жизни 12). Теория Эйнштейна предсказывает расширение Вселенной, вопреки первоначальному нежеланию ее автора принять этот вывод. На самом деле, в начале 1920-х гг., за несколько лет до наблюдений Хаббла, русский метеоролог Александр Фридман, используя уравнения Эйнштейна, детально продемонстрировал, что все галактики переносятся в субстрате расширяющегося пространства, быстро удаляясь друг от друга. Наблюдения Хаббла и многочисленные данные, накопленные впоследствии, полностью подтвердили это потрясающее следствие общей теории относительности. Предложив объясне-ние расширения Вселенной, Эйнштейн совершил один из величайших интеллектуальных подвигов всех времен.
Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками, можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать ее происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся все ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звезды разрушаются, и образуется раскаленная плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до еще меньшего размера. Материя, из которой состоит все: каждый автомобиль, каждое здание, каждая гора на Земле, сама Земля, Луна, Сатурн, Юпитер и все другие планеты, Солнце и все другие звезды Млечного пути, галактика Андромеда с ее 100 миллиардами звезд и все остальные 100 миллиардов галактик – все это сожмется в космических тисках до чудовищной плотности. А когда часы покажут еще более раннее время, весь космос сожмется до размеров апельсина, лимона, горошины, песчинки и даже до еще более крошечного размера. Если экстраполировать весь этот путь назад, к «началу всех начал», можно прийти к выводу, что Вселенная должна была возникнуть как точка (образ, который мы подвергнем критическому анализу в последующих главах), в которой все вещество и вся энергия были спрессованы до невообразимых плотности и температуры. Считается, что огненный шар, вырвавшийся из этой гремучей смеси в результате Большого взрыва, исторг семена, из которых в дальнейшем развилась известная нам Вселенная.
Образ Большого взрыва как космической вспышки, извергнувшей материальное содержимое Вселенной, как шрапнель из разорвавшейся бомбы, полезен для восприятия, но он может ввести в заблуждение. Когда взрывается бомба, она взрывается в определенном месте в пространстве и в определенный момент времени. Ее содержимое выбрасывается в окружающее пространство. При прокручивании вспять эволюции Вселенной, ее материя сжималась потому, что сокращалось все пространство. Размер апельсина, размер горошины, размер песчинки – обратная эволюция размеров относится ко всей Вселенной, а не к чему-то внутри Вселенной. Следуя вспять все ближе к началу, мы не найдем никакого пространства вне точечной гранаты. Большой взрыв представлял собой извержение сжатого пространства, развертывание которого, подобно приливной волне, и по сей день несет с собой материю и энергию.
В экспериментах, выполненных с использованием современной техники, не было обнаружено отклонений от предсказаний общей теории относительности. Только время сможет показать, позволит ли возрастающая точность экспериментов выявить какие-либо отклонения и, тем самым, показать, что эта теория также представляет собой лишь приближенное описание сущности мироздания. Систематическая проверка теорий со все более высокой степенью точности является, конечно, одним из путей развития науки, но это не единственный путь. На самом деле мы уже видели это: поиск новой теории гравитации был инициирован не экспериментальным опровержением теории Ньютона, а конфликтом между ньютоновской гравитацией и другой теорией – специальной теорией относительности. Только после появления общей теории относительности (как конкурирующей теории) были установлены экспериментальные изъяны в теории Ньютона, которые проявлялись в ничтожных, но поддающихся измерению расхождениях между двумя теориями. Таким образом, внутренние теоретические противоречия могутбыть такой же движущей силой прогресса, как и экспериментальные данные.
За последние полвека физики столкнулись с другим теоретическим противоречием, не уступающим противоречию между специальной теорией относительности и ньютоновской гравитацией. Выяснилось, что общая теория относительности, по-видимому, на фундаментальном уровне несовместима с другой чрезвычайно тщательно проверенной теорией – квантовой механикой. Применительно к вопросам, рассмотренным в данной главе, это противоречие не позволяет физикам прийти к пониманию того, что на самом деле происходит с простран-
ством, временем и материей, когда они находятся в спрессованном состоянии, подобном состоянию в момент Большого взрыва или в центре черной дыры. В более общем плане, это противоречие предупреждает нас об отсутствии некоторого фундаментального звена в нашем понимании природы. Разрешить это противоречие не смогли величайшие физики-теоретики, и оно завоевало вполне заслуженную репутацию центральной проблемы современной теоретической физики. Понимание сущности этого противоречия требует знания некоторых основных положений квантовой теории, к которым мы сейчас и перейдем.
1. Isaac Newton, Sir Isaac Newton's Mathematical Principle of Natural Philosophy and His System of the World, Irans. A. Motleand Florian Cajori. Berkeley: University of California Press, 1962, v. I, p. 634. (В рус. пер. см.: письмо Ньютона архиепископу Бентли от 25 февраля 1693 г. // Письма Ньютона и Ньютону. М…-ВИЕТ, 1993, №1, с. 33-45.)
2. Если говорить точнее, Эйнштейн осознал, что принцип эквивалентности сохраняется до тех пор, пока наблюдения ограничены достаточно малой областью пространства, т. е. до тех пор, пока ваше «купе» достаточно мало. Причина этого состоит в следующем. Интенсивность (и направление) гравитационных полей могут изменяться от точки к точке. Однако мы считаем, что купе в целом ускоряется как единое тело и, следовательно, это ускорение имитирует действие однородного гравитационного поля. Чем меньше будет купе, тем меньше пространство, в котором гравитационное поле может изменяться и, следовательно, тем более применимым станет принцип эквивалентности. Разность между однородным гравитационным полем, имитируемым ускорением, и возможно неоднородным «реальным» гравитационным полем, созданным совокупностью массивных тел, носит название «приливного» гравитационного поля (поскольку им объясняется влияние тяготения Луны на приливы на Земле). Подытоживая данное примечание, можно сказать, что уменьшая размер купе, можно сделать приливные гравитационные поля менее заметными и добиться того, что ускоренное движение и «реальное» гравитационное поле будут неразличимы.
3. Цитируется по книге: Albrecht Folsing, Albert Einstein. New York: Viking, 1997, p. 315.
4. John Stachel, Einstein and the Rigidly Rotating Disk. Опубликовано в General Relativity and Gravitation, ed. A. Held. New York: Plenum, 1980, p. I.
5. Анализ аттракциона Верхом на торнадо или «жесткого вращающегося диска», как он называется на более профессиональном языке, может легко привести к недоразумениям. Так, например, и по сей день нет общего согласия по ряду деталей этого примера. В тексте мы следовали духу анализа, выполненного самим Эйнштейном; в примечании мы, оставаясь на той же точке зрения, постараемся пояснить некоторые особенности, которые могут привести к недоразумениям. Во-первых, может показаться непонятным, почему длина окружности колеса не испытает лоренцевского сокращения в той же мере, что и линейка: в этом случае результат, полученный Слимом, совпадал бы с первоначальным. Здесь следует иметь в виду, что мы все время считали, что колесо непрерывно вращается и никогда не рассматривали его в состоянии покоя. Таким образом, с точки зрения неподвижных наблюдателей, единственное различие между измерениями длины окружности и измерениями Слима будет состоять в том, что линейка Слима испытала лоренцевское сокращение; колесо вращалось и во время наших измерений, и тогда, когда мы
наблюдали за измерениями Слима. Видя, что линейка Слима испытала сокращение, мы понимали, что ему придется приложить ее большее число раз, чтобы пройти по всей длине окружности и, следовательно, он получит большее значение, чем мы. Лоренцевское сокращение окружности колеса можно установить, только сравнив результаты измерений на покоящемся и вращаюшемся колесе, однако такое сравнение нас не интересовало. Во-вторых, хотя нам и не требовалось анализировать аттракцион в состоянии покоя, у вас может остаться вопрос, а что случится с колесом, когда оно замедлит свое движение и остановится? Может показаться, что в этом случае следует учитывать изменение длины окружности при изменении скорости вращения, вызванное сокращением Лоренца. Но как можно согласовать это с неизменным радиусом? Это тонкая проблема, решение которой опирается на тот факт, что в реальном мире не существует абсолютно жестких тел. Тела могут растягиваться и изгибаться в ответ на испытываемое ими растяжение или сжатие. Если этого не произойдет, то, как указал Эйнштейн, диск, изготовленный путем охлаждения вращающейся отливки, может разрушиться при изменении скорости вращения. Более подробно история с жестким вращающимся диском описана в работе Стахеля4).
6. Искушенный читатель поймет, что в примере с аттракционом Верхом на торнадо, т. е. в случае равномерно вращающейся системы отсчета, искривленные трехмерные пространственные сечения, на которых мы сконцентрировали наше внимание, объединятся в четырехмерное пространство-время с нулевой кривизной.
7. Цитата Германа Минковского взята из работы: Albrecht Folsing, Albert Einstein. New York: Viking, 1997, p. 189.
8. Интервью с Джоном Уилером, 27 января 1998 г.
9. Точность существующих атомных часов достаточна для того, чтобы обнаружить столь малые и даже еще меньшие искривления времени. Например, в 1976 г. Робер Вессо и Мартин Левин из Смитсонианской астрофизической обсерватории Гарвардского университета совместно со своими коллегами из Национального управления по аэронавтике и космическим исследованиям США (NASA) установили на ракете Scout D, стартовавшей с о, Уоллопс в штате Вирджиния, атомные часы, точность которых составляет одну триллионную долю секунды в час. Они надеялись продемонстрировать, что когда ракета достигнет достаточной высоты (в результате чего уменьшится влияние гравитационного притяжения Земли), идентичные часы, расположенные на Земле (которые будут в полной мере подвергаться действию земного тяготения) будут идти медленнее. Благодаря двустороннему обмену микроволновыми сигналами исследователи смогли сравнить показания двух атомных часов и установить, что действительно, на достигнутой ракетой максимальной высоте 10000 км установленные на ней атомные часы обогнали на 4 миллиардных доли секунды часы, оставшиеся на Земле. Расхождение экспериментальных данных с результатами теоретических расчетов составило менее 0,01 %.
10. В середине XIX в. французский ученый Урбен Жан-Жозеф Леверье установил, что орбита планеты Меркурий немного отклоняется от орбиты, по которой она должна прашаться вокруг Солнца в соответствии с ньютоновским законом всемирного тяготения. В течение более чем полувека предлагались самые разные объяснения так называемой аномальной прецессии перигелия (на обычном языке, в крайних точках своей орбиты Меркурий оказывался не в том месте, в котором он должен был находиться согласно теории Ньютона). В качестве возможных причин рассматривалось гравитационное влияние неизвестной планеты или пояса астероидов, влияние неизвестного спутника, воздействие межзвездной пыли, сплюснутость Солнца, однако ни одно из этих объяснений не получило общего признания. В 1915 г. Эйнштейн рассчитал прецессию перигелия Меркурия с помощью уравнений только что открытой им общей теории относительности. Он получил результат, который по его собственному свидетельству заставил его сердце учащенно биться: значение, полученное с помощью обшей теории относительности, в точности совпадало с экспериментальными данными. Этот успех, несомненно, был одной из важных причин, заставивших Эйнштейна поверить в свою теорию, но большинство других исследователей ожидало предсказания новых явлений, а не объяснения уже известных аномалий. Более подробно эта история описана в книге: Abraham Pais. Subtle Is the Lord: The Science and the Life of Albert Einstein. New York: Oxford University Press, 1982. (Рус. пер.: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна, М.: Наука, Физматлит, 1989.)
11. Robert P. Crease and Charles C.Mann, The Second Creation. New Brunswick. N. J.: Rutgers University Press, 1996, p. 39.
12. К большому удивлению ученых, недавние тщательные исследования скорости расширения Вселенной показали, что в нее может давать вклад очень небольшая, но ненулевая космологическая постоянная.