Противоречия между общей теорией относительности и квантовой теорией, существовавшие до эры теории струн, были оскорблением наших врожденных эстетических представлений о том, что законы природы должны складываться в безупречно стройную и целостную систему. Но суть этих противоречий не сводилась к вопиющему несоответствию абстрактных принципов. Существовавшие в момент Большого взрыва и существующие сейчас внутри черных дыр экстремальные физические условия нельзя объяснить без помощи квантовой формулировки гравитационного взаимодействия. С появлением теории струн появилась и надежда устранить глубокий антагонизм между квантовой теорией и гравитацией. В этой и следующей главах мы опишем, насколько далеко удалось продвинуться физикам в понимании черных дыр и проблемы происхождения Вселенной.
С первого взгляда трудно себе представить два более разобщенных понятия, чем черные дыры и элементарные частицы. Обычно мы представляем себе черные дыры самыми ненасытными из небесных тел, а элементарные частицы – самыми незаметными частицами материи. Однако исследования конца 1960-х и начала 1970-х гг., включая работы Деметриоса Христодулу, Вернера Израэля, Ричарда Прайса, Брендона Картера, Роя Керра, Дэвида Робинсона, Хокинга и Пенроуза, показали, что, возможно, черные дыры и элементарные частицы не так уж и различны, как это может показаться. Эти физики обнаружили весьма веские свидетельства в пользу того, что Джон Уилер суммировал фразой: «У черных дыр нет волос». Уилер имел в виду, что за вычетом небольшого числа отличительных особенностей все черные дыры выглядят одинаково. Какие же это отличительные особенности? Первая, конечно, это масса черной дыры. А остальные? Исследования показали, что ими являются электрический заряд и некоторые другие возможные заряды, а также ее скорость вращения. И это все. Любые две черные дыры с одинаковыми массами, зарядами и спинами совершенно идентичны. У черных дыр нет модных «причесок», т. е. других присущих им свойств, по которым одну из них можно было бы отличить от другой. Для физика этот факт – удары в набат. Вспомним, что именно этими свойствами – массой, зарядом и спином – отличаются друг от друга элементарные частицы. Схожесть определяющих характеристик неоднократно приводила некоторых физиков к мысли о том, что черные дыры, в действительности, могут быть гигантскими элементарными частицами.
Действительно, в теории Эйнштейна не существует ограничений на минимальную массу черной дыры. Согласно теории относительности, если сжать кусок вещества любой массы до достаточно малых размеров, то он превратится в черную дыру (чем меньше масса, тем сильнее его нужно сдавливать). Можно придумать мысленный эксперимент, в котором берутся сгустки материи все меньшей массы, эти сгустки сжимаются до черных дыр все меньших размеров и свойства таких черных дыр сравниваются со свойствами элементарных частиц. Из утверждения Уилера об отсутствии волос можно еделать вывод о том, что образованные таким способом черные дыры будут очень похожи на элементарные частицы. И те и другие выглядят как мельчайшие сгустки материи, полностью характеризующиеся массами, зарядами и спинами.
Однако есть небольшая загвоздка. Черные дыры во Вселенной, массы которых во много раз больше массы Солнца, так велики и тяжелы, что для описания их свойств не нужна квантовая механика, и вполне достаточно уравнений общей теории относительности. (Здесь обсуждается общая структура черной дыры, а не область сингулярности внутри нее. Ввиду крошечных размеров этой области, здесь, несомненно, потребуется квантово-механическое описание.) Но размеры черных дыр уменьшаются по мере уменьшения их масс в нашем мысленном эксперименте, и в какой-то момент квантовая механика начинает играть роль. Это происходит, когда масса черной дыры становится порядка планковской. (С точки зрения физики элементарных частиц планковская масса велика и равна примерно 1019 массы протона, но с точки зрения физики черных дыр эта масса крайне мала.) Поэтому физики, рассуждавшие о возможном близком родстве между элементарными частицами и черными дырами, сразу же натыкались на несовместимость квантовой теории с теорией относительности, лежащей в основе описания черных дыр. В прошлом эта несовместимость парализовала продвижение теоретиков в таком захватывающе интересном направлении.
Да. Совершенно неожиданный и весьма утонченный подход к изучению черных дыр в рамках теории струн начинает давать первые теоретические обоснования взаимосвязи между черными дырами и элементарными частицами. Дорога к установлению этой взаимосвязи не всегда прямая, но она проходит по просторам ярких открытий в теории струн, и путешествие по ней не будет скучным.
В качестве отправной точки рассмотрим похоже совсем несвязанный вопрос, который теоретики долбили со всех сторон с конца 1980-х гг. Математикам и физикам было давно известно, что при свертывании шести пространственных измерений в многообразие Калаби-Яу существует два типа сфер, вложенных в структуру пространства. Сферы первого типа двумерные и похожи на поверхность надувного мяча. Они играли большую роль в обсуждении флоп-перестроек с разрывом пространства в главе 11. Другие сферы представить сложнее, но они встречаются столь же часто. Это трехмерные сферы, подобные поверхностям надувных мячей, в которые играют на песчаных океанских пляжах во вселенной с четырьмя протяженными пространственными измерениями. Обычный же надувной мяч, естественно, является трехмерным, и только его поверхность, как и поверхность Садового шланга, имеет два измерения. Любую точку на этой поверхности можно задать с помощью двух координат, например широты и долготы. Но сейчас мы хотим представить себе еще одно измерение, так что мяч окажется четырехмерным, а его поверхность – трехмерной. А так как представить это визуально почти невозможно, мы, как правило, будем прибегать к наглядной аналогии в случае меньшего числа измерений. Однако, как мы сейчас увидим, одна черта трехмерной природы сферических поверхностей имеет важнейшее значение.
Изучая уравнения теории струн, физики осознали возможность и даже высокую вероятность того, что в процессе эволюции во времени эти трехмерные сферы могут стягиваться, коллапсировать до исчезающе малых размеров. Но что произойдет, задавались вопросом физики, если и структура пространства будет стягиваться аналогичным образом? Не приведет ли такое сжатие пространства к каким-нибудь катастрофическим эффектам? Подобный вопрос уже ставился и был решен нами в главе 11, но там рассматривался только коллапс двумерных сфер, а сейчас наше внимание сосредоточено на изучении трехмерных сфер. (Так же, как и в главе 11, поскольку стягивается лишь часть многообразия Калаби-Яу, а не все пространство, то аргументы главы 10, позволяющие отождествить малые и большие радиусы, неприменимы.) И вот в чем состоит качественное отличие, связанное с изменением числа измерений1). Как описывалось в главе 11, важнейшим свойством движущихся струн является их способность экранировать двумерные сферы. Иными словами, двумерная мировая поверхность струны может целиком окружить двумерную сферу, как показано на рис. 11.6. Этого оказывается достаточно для защиты от катастрофических последствий, возможных при коллапсе двумерной сферы. Но сейчас мы рассматриваем другой тип сфер в пространстве Калаби-Яу, и у этих сфер слишком много измерений, чтобы движущаяся струна могла их окружить. Если понимание последнего утверждения вызывает у читателя сложности, можно без проблем рассмотреть аналогию с числом размерностей на единицу меньше. Трехмерные сферы можно представлять себе в виде двумерных поверхностей надувного мяча, если при этом одномерные струны рассматривать в качестве нульмерных точечных частиц. Ясно, что нульмерная точечная частица не сможет окружить двумерную сферу, поэтому одномерная струна не сможет опоясать трехмерную сферу.
Подобные рассуждения привели теоретиков к выводу, что при коллапсе трехмерной сферы внутри пространства Калаби-Яу (который вполне допускается приближенными уравнениями, если вообще не является рядовым явлением в теории струн) возможны катастрофические последствия. Действительно, из известных к середине 1990-х гг. приближенных уравнений теории струн, казалось бы, следовало, что если такой коллапс случится. Вселенной придет конец: некоторые расходимости, которые сокращаются в теории струн, в случае подобного перетягивания структуры пространства перестанут сокращаться. Несколько лет физикам приходилось мириться с этим неприятным, хотя и не окончательно установленным фактом. Но в 1995 г. Эндрю Строминджер показал, что подобные предсказания неверны, и конец света еще далек.
Строминджер, следуя более ранней потрясающей работе Виттена и Зайберга, опирался на то, что теория струн в свете новых открытий, сделанных во время второй революции в теории суперструн, не есть лишь теория одномерных струн. Он рассуждал так. Одномерная струна, т.е. 1-брана на новом языке теоретиков, может полностью окружить одномерный пространственый объект, например изображенную на рис. 13.1 окружность. (Отметим различие с рис. 11.6, где одномерная движущаяся во времени струна опоясывала двумерную сферу. Рис. 13.1 можно рассматривать в качестве мгновенной фотографии).
Аналогично, на рис. 13.1 видно, что двумерная мембрана, т. е. 2-брана, может обернуть и полностью покрыть собой двумерную сферу, подобно тому, как полиэтиленовая пленка плотно обертывает поверхность апельсина. По аналогии Строминджер предположил, что открытые недавно трехмерные объекты теории струн, т.е. 3-браны, могут окутывать и полностью покрывать собой трехмерные сферы, хотя это и сложно представить себе наглядно. Ясно ощутив эту аналогию и выполнив простые стандартные расчеты, Строминджер показал, что 3-брана является как на заказ скроенным экраном, в точности компенсирующим потенциально катастрофические последствия возможного коллапса трехмерной сферы, которых так боялись физики.
Это был прекрасный и важный результат. Но вся его сила открылась лишь некоторое время спустя.
У физики есть одна захватывающая особенность: уровень понимания этой науки может измениться буквально за одну ночь. На следующее утро после того, как Строминджер послал свою статью в электронную базу данных, я скачал ее из Интернета и прочел в своем кабинете в Корнелле. Используя новые достижения теории струн, Строминджер одним махом разрешил считавшийся одним из самых запутанных вопрос о свертывании лишних измерений в пространство Калаби– Яу. Но после того как я разобрался в статье, мне пришло в голову, что он, возможно, раскрыл лишь половину того, что могло стоять за этой проблемой.
В описанной в главе 11 более ранней работе о флоп-перестройках с разрывом пространства мы исследовали двухэтапный процесс, в котором двумерная сфера стягивается в точку, приводя к разрыву структуры пространства, а затем раздувается по другим законам, приводя к восстановлению этой структуры. В своей статье Строминджер исследовал, что происходит при сжатии в точку трехмерной сферы; он показал, что благодаря открытым недавно протяженным объектам в теории струн физические свойства остаются хорошо определенными. И на этом его работа заканчивалась. Но нельзя ли исследовать второй этап, включающий, как и ранее, разрыв пространства и его последующее восстановление путем раздутия сфер?
Во время весеннего семестра 1995 г. у меня в Корнелле гостил Дейв Моррисон, и в тот день мы встретились, чтобы обсудить статью Строминджера. Через пару часов нам в общих чертах уже было понятно, что представляет собой второй этап. Вспомнив как Канделас, Грин и Тристан Хюбш (в то время работавший в Техасском университете в Остине) использовали некоторые результаты конца 1980-х гг., полученные математиками Гербом Клеменсом из университета штата Юта, Робертом Фридманом из Колумбийского университета и Майлсом Рейдом из университета в Уорвике, мы поняли, что при коллапсе трехмерной сферы возможен разрыв пространства Калаби-Яу и его последующее восстановление при повторном раздутии сферы. Но здесь нас ожидал сюрприз. Коллапсирующая сфера имела три измерения, а раздувающаяся – всего лишь два. Сложно описать, как это выглядит, но можно проиллюстрировать идею, пользуясь аналогией с меньшим числом измерений. Вместо того чтобы пытаться представить коллапс трехмерной сферы и ее замещение двумерной сферой, представим себе коллапс одномерной сферы и ее замещение нульмерной.
Прежде всего, что такое одномерная или нульмерная сфера? Будем рассуждать по аналогии. Двумерная сфера – это совокупность точек трехмерного пространства, расположенных на одинаковых расстояниях от выбранного центра, как показано на рис. 13.2 а. По аналогии с этим, одномерная сфера есть совокупность точек двумерного пространства (например, поверхности этой страницы), расположенных на одинаковых расстояниях от выбранного центра. Как показано на рис. 13.2б, это просто окружность.
Наконец, согласно той же аналогии нульмерная сфера есть совокупность точек одномерного пространства (прямой линии), расположенных на одинаковых расстояниях от общего центра. Таким образом, аналогия с меньшим числом измерений, упоминавшаяся в предыдущем параграфе, приводит к окружности (одномерной сфере), которая стягивается, затем происходит разрыв пространства, и окружность замещается нульмерной сферой (двумя точками). На рис. 13.3 иллюстрируется конкретная реализация этой абстрактной идеи.
Предположим, что сначала имеется поверхность тора (баранки), в которую вложена одномерная сфера (окружность) – она выделена на рис. 13.3. Теперь представим, что с течением времени эта окружность стягивается, и структура пространства рвется. Можно восстановить пространство," позволив ему разорваться лишь на мгновение и заменив сжатую одномерную сферу (стянутую окружность) нульмерной сферой – двумя точками, затыкающими отверстия в верхней и нижней части образовавшейся после разрыва фигуры. Как показано на рис. 13.3, в результате получится фигура, похожая на кривой банан, которую затем можно постепенно и гладко (без разрывов пространства) продеформировать в поверхность надувного мяча. В итоге мы видим, что при коллапсе одномерной сферы и замещении ее нульмерной топология исходного тора, т. е. его фундаментальная форма, радикально изменяется. В контексте свернутых пространственных измерений эволюция с разрывом пространства, изображенная на рис. 13.3, привела бы вселенную, показанную на рис. 8.8, к виду на рис. 8.7.
И хотя все это лишь аналогия с меньшим числом измерений, здесь улавливаются основные идеи нашей с Моррисоном гипотезы о втором этапе, продолжающем исследования Строминджера. Нам казалось, что после коллапса трехмерной сферы внутри пространства Калаби-Яу пространство должно разорваться, а затем само собой восстановиться путем отращивания двумерной сферы, приводя к гораздо более серьезным изменениям топологии, чем те, которые Виттен и мы обнаружили в наших предыдущих работах (см. главу 11). При этом одно многообразие Калаби-Яу может, по существу, превратиться в совершенно иное многообразие Калаби-Яу (подобно тому, как тор превратился в сферу на рис. 13.3), но физические характеристики будут по-прежнему хорошо определены. Хотя картина начала вырисовываться, мы знали, что потребуется проработать некоторые важные моменты до того, как можно будет заявить о том, что на нашем втором этапе не возникают сингулярности, т. е. пагубные и неприемлемые для физики последствия. В тот вечер мы оба отправились домой в приподнятом настроении, ощущая близость нового важного результата.
На следующее утро я получил по электронной почте письмо от Строминджера, спрашивавшего о моей реакции на его статью. Он упомянул, что эта статья «должна быть как-то связана с Вашей работой вместе с Аспинуоллом и Моррисоном». Как выяснилось, он тоже исследовал возможную связь с эффектом изменения топологии. Я немедленно написал ему, очертив грубую схему, к которой мы с Моррисоном пришли накануне. Его ответ показал, что он возбужден не меньше, чем мы с Моррисоном после вчерашней встречи.
На протяжении следующих нескольких дней между нами троими циркулировал непрерывный поток электронной почты: мы лихорадочно пытались строго на цифрах обосновать идею о радикальном изменении топологии при разрыве пространства. Медленно, но верно, все вставало на свои места. К следующей среде, через неделю после того, как Строминджер опубликовал свой результат в Интернете, у нас был набросок совместной статьи, в котором описывалось новое поразительное преобразование структуры пространства после коллапса трехмерной сферы.
На следующий день у Строминджера был запланирован доклад на семинаре в Гарварде, и рано утром он вылетел из Санта-Барбары. Мы договорились, что Моррисон и я будем оттачивать последние детали нашей статьи и к вечеру пошлем ее в электронный архив. К 23:45 я проверил и перепроверил все наши вычисления – все прекрасно сходилось. Поэтому я отослал статью и отправился в корпус физики. Пока мы с Моррисоном шли к машине (я собирался подбросить его до дома, который он снял до конца семестра), наш разговор перешел в спор, в котором мы сами для себя играли роль критиков, изо всех сил пытающихся доказать, что наши результаты неверны. Пока мы выруливали со стоянки и выезжали с территории университета, мы поняли, что при всей силе и убедительности нашей аргументации, она не является совершенно пуленепробиваемой. Никто из нас не сомневался, что работа безошибочна, но нам пришлось признать, что сила наших доводов и отдельные выбранные нами словесные формулировки в некоторых местах статьи могут дать повод для яростных споров, завуалировав важность полученных результатов. Мы сошлись на том, что при подготовке статьи следует придерживаться более скромной позиции и снизить напор наших доводов: это позволило бы физикам самим оценить достоинства статьи, не втягиваясь в возможные дискуссии по поводу того, в какой форме наши результаты представлены.
По дороге Моррисон напомнил мне, что по правилам электронного архива мы можем редактировать статью до двух ночи, после чего она будет выложена для общего доступа. Я немедленно повернул машину, и мы помчались обратно в корпус физики. Мы забрали первоначальный вариант статьи и стали думать о том, как смягчить ее стиль. К счастью, все было довольно просто. Замена нескольких слов в особо ответственных параграфах сгладила резкие углы нашей аргументации без ущерба для содержания работы. Через час мы отослали статью снова и договорились не упоминать о ней всю дорогу до дома Моррисона.
Еще до полудня следующего дня стало ясно, что реакция на статью весьма активная. Среди многих ответов по электронной почте было и письмо Плессера. В нем содержалась наивысшая похвала, которой один физик может удостоить другого: «Как жаль, что эта мысль пришла в голову не мне!». Несмотря на наши опасения предыдущей ночи, нам удалось убедить сообщество физиков в том, что структура пространства может подвергаться не только открытым ранее умеренным разрывам (см. главу 11), но и гораздо более сильным, изображенным на рис. 13.3.
Есть ли у всего этого какая-нибудь связь с черными дырами и элементарными частицами? Таких связей множество. Чтобы это понять, нужно задаться тем же вопросом, что и в главе 11. К каким наблюдаемым следствиям приведут такие разрывы структуры пространства? Для флоп-перестроек, обсуждавшихся выше, неожиданно оказывается, что нет практически никаких наблюдаемых последствий. В случае конифолдных переходов – такое название мы дали недавно переходам с сильным разрывом пространства, – как и ранее, не происходит никакой физической катастрофы (она случилась бы в традиционной теории относительности), но здесь имеется больше ярко выраженных наблюдаемых последствий.
Наблюдаемые последствия основаны на двух связанных идеях. Рассмотрим их по очереди. Во-первых, как обсуждалось выше, суть исходной работы Строминджера состояла в открытии того, что трехмерная сфера внутри пространства Калаби-Яу может коллапсировать без возникновения катастрофы, так как обертывающая ее 3-брана служит надежным защитным экраном. Но как выглядит эта конструкция с обернутой вокруг сферы 3-браной? Ответ дает более ранняя работа Хоровица и Строминджера, в которой показано, что для существ типа нас с вами, органам чувств которых прямо доступны лишь три развернутых пространственных измерения, «оборачивающиеся» вокруг трехмерной сферы 3-браны предстанут в виде гравитационного поля сродни полю черной дыры2). Этот факт не очевиден, и становится ясен только после тщательного изучения описывающих браны уравнений. Здесь, как и выше, сложно изобразить многомерную конфигурацию на двумерном рисунке, но примерное представление по аналогии с двумерными сферами можно получить из рис. 13.4. Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби-Яу, находящегося в некоторой точке пространства развернутых измерений).
Некто, наблюдающий эту точку сквозь развернутые измерения, почувствует брану по ее массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним черная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса черной дыры, пропорциональна объему трехмерной сферы, которую она обертывает. Чем больше объем сферы, тем больше должна быть обертывающая ее 3-брана, и тем больше ее масса. Аналогично, чем меньше объем сферы, тем меньше масса обертывающей ее 3-браны. По мере сжатия сферы обертывающая ее 3-брана, которая выглядит, как черная дыра, становится легче. В момент, когда трехмерная сфера стягивается в точку, соответствующая черная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это еше за безмассовая черная дыра?), но чуть ниже мы свяжем этот загадочный феномен со знакомой физикой струн.
Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби-Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трехмерной сферы в свернутых измерениях Калаби-Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведенный на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)
Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби-Яу при постепенном уменьшении размеров некоторой сидящей внутри трехмерной сферы. Из первой идеи следует, что масса 3-браны, обертывающей трехмерную сферу и кажущейся нам черной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства, на микроскопических масштабах описывает безмассовую частицу, в которую превращается черная дыра. Вывод такой: при эволюции многообразия Калаби-Яу, сопровождающейся конифолдным переходом с разрывом пространства, изначально ненулевая масса черной дыры уменьшается до нуля, после чего черная дыра превращается в безмассовую частицу (подобную фотону), которая на языке теории струн описывается определенной колебательной модой струны. Таким образом, в теории струн впервые удается установить прямую, точную и количественно неопровержимую связь между черными дырами и элементарными частицами.
Найденная связь между черными дырами и элементарными частицами по своей природе близка классу явлений, которые мы наблюдаем в повседневной жизни, и которые в физике называют фазовыми переходами. Простой пример фазового перехода упоминался в предыдущей главе: вода может существовать в твердом состоянии (лед), в жидком состоянии (жидкая вода) или в газообразном состоянии (пар). Эти состояния называют фазами воды, а превращения из одного состояния в другое – фазовыми переходами. Моррисон, Строминджер и я показали, что между фазовыми переходами и конифолдными переходами многообразий Калаби-Яу существует тесная математическая и физическая связь. Так же, как не видевшее жидкой воды или твердого льда существо не поймет, что перед ним две фазы одного вещества, физики ранее не понимали, что изучавшиеся ими черные дыры и элементарные частицы являются двумя фазами одной струнной материи. Подобно тому, как температура определяет фазу, в которой при нормальном давлении находится вода, топологический вид дополнительных измерений Калаби-Яу определяет то, в каком обличий предстанут перед нами определенные физические конфигурации в теории струн: как черные дыры или как элементарные частицы. В первой фазе – исходное многообразие Калаби-Яу (для определенности, аналог льда) – будет обнаружено присутствие черных дыр. Во второй фазе – другое многообразие Калаби-Яу (аналог воды) – черные дыры подверглись фазовому переходу, «растаяли», и перешли в фундаментальные колебательные моды струны. Разрывы пространства при конифолдных переходах переводят многообразия Калаби-Яу из одной фазы в другую. Так что черные дыры и элементарные частицы, как вода и лед, являются двумя сторонами одной монеты. Мы видим, что черные дыры хорошо вписываются в формализм теории струн.
Для кардинальных переходов с разрывом пространства и для переходов от одной из пяти формулировок теории струн к другой (см. главу 12) умышленно использовалась одна и та же аналогия с водой, так как эти переходы тесно связаны. Вспомним (см. рис. 12.11), что пять теорий струн дуальны друг другу и, следовательно, объединены под эгидой охватывающей их единой теории.
Но сохранится ли возможность непрерывного перехода от одного описания к другому, т. е. возможность попасть в любую точку карты рис. 12.11 из любой другой, и после того, как мы будем свертывать лишние измерения в разные многообразия Калаби-Яу? До открытия переходов с кардинальным изменением топологии ожидаемый ответ был отрицательным, так как до этого открытия не было известно, как деформировать одно многообразие Калаби-Яу в другое. Однако сейчас мы видим, что ответ положительный. Путем физически допустимых конифолдных переходов с разрывом пространства можно непрерывно преобразовать любое заданное многообразие Калаби-Яу в любое другое. Все струнные модели, полученные изменениями константы связи и геометрии пространства Калаби-Яу, будут разными фазами единой теории. Целостность схемы рис. 12.11 сохранится даже после сворачивания всех дополнительных измерений.
Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между черными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является энтропия черной дыры. Именно в области изучения энтропии черной дыры теория струн наиболее выразительно продемонстрировала свою гибкость и дала возможность разрешить важнейшую проблему, поставленную еще четверть века назад.
Энтропия – это мера беспорядка или хаотичности. Например, если рабочее место завалено открытыми книгами, недочитанными статьями, старыми газетами и еше не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет высокую энтропию. И наоборот, если статьи рассортированы по темам в разные папки, газеты аккуратно разложены по номерам, книги расставлены по алфавиту, а все ручки и карандаши стоят в своих подставках, то рабочее место находится в хорошем порядке, и имеет низкую энтропию. Этот пример иллюстрирует суть понятия энтропии, однако ученые дали ей строгое количественное определение, позволяющее описывать энтропию тел с помощью численных значений. Чем больше численное значение, тем больше энтропия, и наоборот. Хотя подробности вычислений не очень просты, это число, грубо говоря, равно числу всевозможных перегруппировок элементов данной физической системы, при которых ее общий вид не изменяется. Если рабочее место прибрано, то почти всякая перестановка – изменение порядка газет, книг, статей, или перемещение ручки из держателя на стол – приведет к нарушению порядка. С другой стороны, если на рабочем месте беспорядок, то при множестве вариантов перекладываний газет, статей и т.д. беспорядок так и останется беспорядком, и общий вид рабочего места не изменится. Поэтому в последнем случае энтропия велика.
Конечно, примеру перегруппировки предметов на рабочем месте с его нечетким определением того, какие именно перегруппировки «не изменяют общий вид», не достает научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово-механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах.
В 1970 г. Якоб Бекенштейн, в то время учившийся в аспирантуре Принстонского университета у Джона Уилера, сделал смелое предположение. Он выдвинул замечательную идею о том, что черные дыры обладают энтропией, которая очень велика. Бекенштейн опирался на общепризнанное и хорошо проверенное второе начало термодинамики, согласно которому энтропия системы постоянно растет. Все движется в направлении еще большего беспорядка. Даже если физик сделает, наконец, уборку своего рабочего места, уменьшив энтропию, полная энтропия, в которую входит энтропия самого физика и энтропия воздуха в комнате, увеличится. Действительно, на уборку рабочего места уходит энергия, и эта энергия вырабатывается внутри тела физика при расщеплении молекул в упорядоченных жировых складках тела, переходя в мускульную силу. Кроме того, при уборке его тело отдает теплоту, и окружающие молекулы воздуха увеличивают скорость, приводя к увеличению беспорядка. Если учесть все подобные эффекты, они с лихвой компенсируют уменьшение энтропии рабочего места, так что полная энтропия возрастет.
Но что произойдет, рассуждал далее Бекенштейн, если сделать уборку рабочего места вблизи горизонта событий черной дыры и откачать насосом все разогнанные молекулы, образовавшиеся во время уборки, в бездонный омут черной дыры? Можно поступить еще более радикально: откачать весь воздух, все содержимое рабочего стола вместе со столом, да и самого бедного физика, оставив пустую, зато идеально прибранную комнату. Так как очевидно, что энтропия в комнате уменьшится, Бекенштейн пришел к выводу, что второе начало термодинамики не будет нарушено лишь в случае, если у черной дыры тоже есть энтропия, и эта энтропия постоянно растет по мере засасывания в черную дыру материи, компенсируя наблюдаемое уменьшение энтропии снаружи черной дыры.
На самом деле Бекенштейну для усиления своей аргументации удалось даже привлечь знаменитый результат Стивена Хокинга, который показал, что площадь горизонта событий черной дыры, т. е. площадь поверхности вокруг черной дыры, после пересечения которой нет пути назад, всегда увеличивается при любых физических взаимодействиях. Хокинг продемонстрировал, что если в черную дыру попадет астероид, или если на черную дыру попадет излучение с поверхности близкой звезды, или если две черные дыры столкнутся и объединятся, то полная плошадь горизонта событий черной дыры обязательно увеличится. Для Бекенштейна неуемный рост этой площади был связующим звеном с неумолимым ростом энтропии согласно второму началу термодинамики. Он предположил, что площадь горизонта событий черной дыры и есть точная мера ее энтропии.
Однако при ближайшем рассмотрении можно найти два объяснения тому, почему большинство физиков считали, что идея Бекенштейна неверна. Во-первых, черные дыры кажутся одними из наиболее упорядоченных и организованных объектов во всей Вселенной. Как только измерена масса, заряд и спин черной дыры, ее точную идентификацию можно считать завершенной. При столь малом числе определяющих свойств кажется, что у черных дыр нет достаточной структуры, в которой мог бы возникнуть беспорядок. Черные дыры казались слишком простыми для поддержания беспорядка: если на столе лежат лишь книга и карандаш, трудно разгуляться и устроить на нем хаос. Вторая причина того, что аргументы Бекенштейна воспринимались плохо, заключается в следующем. Как обсуждалось выше, энтропия является квантово-механическом понятием, а черные дыры до последнего времени относили к враждебному лагерю традиционной общей теории относительности. В начале 1970-х гг., когда еше не был известен способ объединения теории относительности и квантовой теории, обсуждение энтропии черной дыры казалось, по меньшей мере, нелепым.
Оказалось, что Хокинг тоже думал о схожести закона об увеличении площади горизонта черной дыры и закона о неминуемом росте энтропии, но решил, что эта аналогия есть просто совпадение, и выбросил ее из головы. В конце концов, рассуждал Хокинг, если принимать аналогию между черными дырами и термодинамикой всерьез, придется не только отождествить плошадь горизонта событий черной дыры с энтропией, но при этом, как следовало из его работ и совместных работ с Джеймсом Бардином и Брендоном Картером, приписать черной дыре температуру (точное значение которой определялось бы напряженностью гравитационного поля на горизонте событий). А если у черной дыры есть сколь угодно малая ненулевая температура, то она, в соответствии с фундаментальными и хорошо установленными физическими принципами, должна излучать энергию, подобно раскаленному металлическому пруту. Но черные дыры – черные, и по определению не могут ничего излучать. Хокинг и почти все остальные сошлись на том, что данный факт, несомненно, позволяет исключить из рассмотрения утверждение Бекенштейна. И Хокинг начал склоняться к мысли о том, что если несущая энтропию материя попадает в черную дыру, то энтропия теряется, и дело с концом. Так что нечего говорить о втором начале термодинамики.
Так продолжалось до конца 1974 г., когда Хокинг обнаружил нечто совершенно поразительное. Черные дыры, объявил Хокинг, не совсем черные. Если пренебречь квантовыми эффектами и опираться только на традиционную общую теорию относительности, то черные дыры, как было обнаружено еше шестьдесят лет назад, конечно, не дадут ничему, даже свету, вырваться из своих гравитационных объятий. Но учет квантово-механических эффектов сильно меняет картину. Даже не обладая квантово-механическим вариантом общей теории относительности, путем ухищренных приемов Хокинг сумел построить частичное объединение двух теорий: оно было применимо лишь к небольшому числу ситуаций, но давало надежные результаты. И наиболее важным из них был результат о том, что на квантовом уровне черные дыры действительно излучают.
Расчеты очень длинны и сложны, но основная идея Хокинга проста. Как обсуждалось выше, согласно соотношению неопределенностей даже в пустом пространстве кишит рой виртуальных частиц, на мгновение вырывающихся из вакуума и аннигилирующих друг с другом. Этот хаотический процесс происходит и снаружи черной дыры, рядом с ее горизонтом событий. И Хокинг понял, что гравитационная сила черной дыры может передать энергию паре виртуальных частиц, засасывая внутрь себя одну частицу из пары. Если одна из частиц исчезла в бездне черной дыры, то вторая остается без партнера, с которым она может аннигилировать. Вместо этого, как показал Хокинг, уцелевшей частице передается энергия гравитационного поля черной дыры и, пока ее партнера засасывает в бездну, она выталкивается прочь от черной дыры. Хокинг понял, что для наблюдателя, уютно устроившегося на безопасном расстоянии от черной дыры, и регистрирующего совокупный результат этого непрерывно происходящего вокруг черной дыры разлучения пар, будет казаться, что из черной дыры исходит непрерывное излучение. Черные дыры светятся.
Более того, Хокингу удалось вычислить температуру, которую наблюдатель приписал бы этому излучению: оказалось, что она определяется напряженностью гравитационного поля на горизонте черной дыры, в точном согласии с аналогией между черными дырами и термодинамикой3). Бекенштейн был прав, и результаты Хокинга показали, что его аналогию следует воспринимать всерьез. На самом деле результаты показали, что это даже не аналогия – это тождественность. У черной дыры есть энтропия. У черной дыры есть температура. И законы физики гравитации черной дыры – не что иное, как законы термодинамики в крайне необычных условиях. В этом состоял ошеломляющий результат исследований Хокинга 1974 г.
Чтобы читатель понял, о каких масштабах величин идет речь, приведем пример: черная дыра с массой, втрое превышающей массу Солнца, будет, после учета всех эффектов, иметь температуру примерно 10-8 К.
Не нуль – но только чуть теплее. Черные дыры не точно черны – но только чуть светлее. К сожалению, по этой причине излучение черной дыры очень слабое, и его невозможно обнаружить экспериментально. Однако есть исключение. Из вычислений Хокинга следует еще один факт: чем меньше масса черной дыры, тем выше ее температура, и тем сильнее ее излучение. Например, излучение черной дыры массой с небольшой астероид сравнимо с излучением водородной бомбы мощностью в миллион мегатонн, причем это излучение сконцентрировано на шкале электромагнитных волн в гамма-области. Ночами астрономы пытались поймать такое излучение, но улов был невелик: лишь несколько кандидатов с малыми шансами на успех. Это наводит на мысль, что если черные дыры с такими малыми массами и существуют, то они крайне редки4). Как часто шутит Хокинг, это плохо, так как если бы предсказанное излучение черных дыр обнаружили, Нобелевская премия была бы ему гарантирована5).
По сравнению с этой мизерной температурой в миллионные доли градуса, вычисление энтропии черной дыры массой три массы Солнца дает грандиозное число: единицу с 78 нулями! И чем массивнее дыра, тем энтропия больше. Успех расчетов Хокинга недвусмысленно показывает, какой несусветный беспорядок творится внутри черной дыры.
Но беспорядок чего? Как мы видели, черные дыры – крайне примитивные объекты, в чем же причина этого беспорядка? Здесь расчеты Хокинга полностью немы. Его частичное объединение теории относительности и квантовой теории можно использовать для вычисления значения энтропии черной дыры, но постичь ее микроскопический смысл с помощью такой теории невозможно. Почти четверть века величайшие физики пытались понять, какими микроскопическими свойствами черных дыр можно объяснить такое значение их энтропии. Без действительно надежного сплава общей теории относительности и квантовой теории могли возникать проблески ответа, но тайна так и оставалась нераскрытой.
Но так было до конца 1996 г., пока Строминджер и Вафа, опираясь на более ранние результаты Сасскинда и Сена, не написали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга», появившуюся в электронном архиве статей по физике. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса черных дыр, а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений, которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга и наносил последние штрихи на картину, начатую более двадцати лет назад.
Строминджер и Вафа сосредоточили внимание на так называемых экстремальных черных дырах. Такие черные дыры наделены зарядом (можно считать его электрическим зарядом) и, кроме того, имеют наименьшую возможную массу, совместимую с этим зарядом. Как видно из приведенного определения, подобные черные дыры тесно связаны с рассмотренными в главе 12 БПС-состояниями. И Строминджер с Вафой выжали из этой связи все, что могли. Они продемонстрировали, что можно построить (теоретически, разумеется) экстремальные черные дыры, если выбрать конкретный набор БПС-бран (определенных размерностей), а затем связать эти браны, действуя по точной математической схеме. Строминджер и Вафа показали, что подобно тому, как можно построить (еще раз, теоретически!) атом, если взять набор кварков и электронов, а затем точно сгруппировать их в протоны и нейтроны с вращающимися по орбитам электронами, некоторые из недавно обнаруженных компонентов теории струн можно слепить вместе и получить определенные черные дыры.
В реальном мире образование черных дыр является только одним из возможных вариантов гибели звезд. После того, как за миллиарды лет ядерного синтеза звезда сжигает весь запас ядерного топлива, она оказывается неспособной далее компенсировать сжимающую громадную силу гравитации направленным наружу давлением. Для широкого класса условий это приводит к катастрофическому взрыву огромной массы звезды: под действием собственной силы тяжести она коллапсирует, образуя черную дыру. Реальным процессам образования черных дыр Строминджер и Вафа противопоставили «конструктивный» подход. Они изменили точку зрения на образование черных дыр, показав, что их можно конструировать (в воображении теоретика) по строгому набору правил – путем кропотливой, неспешной и дотошной сборки в один механизм точного набора бран, открытых во время второй революции в теории суперструн.
Сила этого подхода сразу стала очевидной. Имея в руках все рычаги управления микроскопической конструкцией черной дыры, Строминджер и Вафа смогли легко вычислить число перестановок микроскопических компонентов черной дыры, при которых общие наблюдаемые характеристики, например масса и заряд, остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий черной дыры – энтропией, предсказанной Бекенштейном и Хокингом. При этом обнаружилось идеальное согласие. По крайней мере, для класса экстремальных черных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена6).
Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Наше понимание теории струн до сих пор остается слишком грубым для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Но сейчас видно, что теория струн дает первое фундаментальное обоснование давно открытого свойства черных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. И это свойство черных дыр тесно связано с предсказанием Хокинга об их излучении, которое, в принципе, может быть проверено экспериментально. Последнее, разумеется, означает, что сначала нужно точно зарегистрировать на небе черную дыру, а затем сконструировать оборудование, достаточно чувствительное для регистрации ее излучения. Если бы черные дыры были не такими черными, то сделать это можно было бы уже сегодня. Несмотря на то, что экспериментальная программа еще не увенчалась успехом, полученный результат говорит о том, что пропасть между теорией струн и реальностью можно преодолеть. Даже Шелдон Глэшоу, убежденный противник теории струн в 1980-е гг., недавно признался, что «когда струнные теоретики говорят о черных дырах, речь идет едва ли не о наблюдаемых яалениях, и это впечатляет»7.
Даже после этого впечатляющего прогресса остаются две важнейшие проблемы, связанные с черными дырами. Первая связана с тем, что понятие черной дыры изменяет наши представления о детерминизме. В начале XIX в. французский математик Пьер Симон Лаплас огласил строгие и далеко идущие последствия для нашей Вселенной, вытекающие из законов Ньютона: «Знание, которое в данный момент способно было бы узреть все силы, движущие природой, как и их обстоятельства у истоков сего движения, будь знание это к тому же столь велико, что все данные можно было бы подвергнуть анализу, охватило бы одной формулой и движения величайших тел во Вселенной, и движения легчайших атомов. Для знания такого ничто не было бы неясным, и будущее, равно как и прошлое, открылось бы его взору»8).
Другими словами, если в некоторый момент известны положения и скорости всех частиц во Вселенной, с помощью законов Ньютона можно определить (по крайней мере, в принципе) их положения и скорости для любого момента времени в прошлом или в будущем. С этой точки зрения все без исключения события, будь то образование Солнца, распятие Христа или все наши телодвижения в этом мире, строго вытекают из точных значений координат и скоростей частиц Вселенной в момент после Большого взрыва. В этой жесткой, не допускающей отклонений модели эволюции Вселенной встает множество запутанных философских проблем, связанных с вопросом о свободе выбора, но их актуальность сильно снизилась после открытия квантовой механики. Как обсуждалось, соотношение неопределенностей Гейзенберга подрывает детерминизм Лапласа, так как в принципе нельзя узнать точные положения и скорости элементов Вселенной. На смену классическому пришло описание в терминах волновых функций, в котором можно рассуждать лишь о вероятностях того, что данная частица находится в том или ином месте, либо имеет ту или иную скорость.
Однако низвержение аргументов Лапласа не было полным крахом концепции детерминизма. Волновые функции, описывающие вероятности в квантовой механике, изменяются во времени по совершенно определенным математическим правилам, таким, как уравнение Шредингера (или его более точные релятивистские обобщения, например уравнение Дирака и уравнение Клейна-Гордона). Это говорит о том, что классический детерминизм Лапласа заменяется квантовым детерминизмом. Зная волновые функции всех фундаментальных объектов Вселенной в определенный момент времени, «достаточно обширный разум» может определить волновые функции в любой предшествующий или последующий момент. Квантовый детерминизм утверждает, что вероятность определенного события в выбранный момент времени в будущем полностью определяется знанием волновых функций в любой предшествующий момент. Вероятностная картина квантовой механики существенно смягчает детерминизм Лапласа, замещая неизбежность исходов их возможностью, однако последняя полностью определяется в общепринятом формализме квантовой теории.
В 1976 г. Хокинг объявил, что даже этот смягченный вариант детерминизма нарушается из-за существования черных дыр.
Эти вычисления, как и вычисления энтропии, были невероятно сложными, но главная мысль легко уловима. Если какой-нибудь объект попадает в черную дыру, туда же отправляется и его волновая функция. Но это означает, что наш «достаточно обширный разум», пытающийся определить волновые функции для будущих моментов, будет фатально сбит с толку черной дырой. Чтобы полностью предсказать то, что будет завтра, сегодня нам нужно знать все волновые функции. И если некоторые из них сгинули в омуте черной дыры, то содержащаяся в них информация потеряна.
На первый взгляд это осложнение, вызванное существованием черных дыр, может показаться несущественным. Все, что скрылось за горизонтом событий черной дыры, отрезано от остального мира – так не проще ли вообще забыть об объектах, которых угораздило туда попасть? Кроме того, рассуждая философски, разве нельзя представить себе, что информация, которую переносили попавшие о дыру объекты, не потеряна для Вселенной, а просто скрыта в области пространства, которую мы, разумные существа, решили избегать любой ценой? До открытия Хокингом того, что черные дыры не совсем черные, ответ на эти вопросы был бы положительным. Но результат Хокинга об излучении черных дыр все меняет. Излучение переносит энергию, и поэтому при излучении черной дыры ее масса медленно уменьшается – дыра медленно испаряется. При этом расстояние от центра дыры до горизонта событий постепенно сокращается, и когда завеса отступает, прежде отрезанные от мира области снова оказываются на сцене космического бытия. Вот тут-то мы со своими философскими доводами и наступаем на грабли: восстановится ли информация, которую переносили проглоченные дырой объекты и которая, как мы представляли, хранится внутри черной дыры, после того, как черная дыра испарится? Без этой информации квантовый детерминизм будет нарушен, так что последний вопрос приобретает глубокий смысл: не могут ли черные дыры вносить еще больший элемент случайности в эволюцию Вселенной?
В момент, когда писалась эта глава, у физиков не было единодушного мнения по данному вопросу. Многие годы Хокинг настойчиво утверждал, что информация не восстанавливается: черные дыры разрушают ее, «вводя новый уровень неопределенности в физику, усугубляющий общеизвестную неопределенность в квантовой теории»9). Хокинг и Кип Торн из Калифорнийского технологического института даже поспорили с Джоном Прескиллом из того же института о том, что произойдет с информацией, захваченной черной дырой. Хокинг и Торн ставили на то, что информация будет потеряна, а Прескилл – на то, что информация восстановится при излучении и уменьшении черной дыры. Угадайте, на что они спорили? На саму информацию: «Проигравший(е) обязуется приобрести для победителя(ей) энциклопедию на выбор победителя (ей)».
И хотя спор все еще не разрешен, недавно Хокинг признал, что в свете обсуждавшегося нового понимания черных дыр в теории струн может существовать способ восстановления информации10). Идея состоит в том, что для типов черных дыр, изученных Строминджером и Вафой (а также многими физиками, вовлеченными в подобные исследования их статьей), информацию можно хранить в компонентных бранах, а затем извлекать из них. По выражению Строминджера, этот результат «возбудил у некоторых теоретиков желание заявить о победе, о том, что при испарении черных дыр информация восстанавливается. По-моему, этот вывод является преждевременным, и предстоит сделать еще немало, чтобы определить, правильный он или нет»11). Так же считает и Вафа, заявляя, что он «в этом вопросе агностик: здесь все еще возможен любой исход»12). Ответ на поставленный вопрос является главной задачей текущих исследований. Приведем слова Хокинга: «Большинство физиков хотят верить, что информация не теряется, так как в этом случае мир будет надежным и предсказуемым. Но я считаю, что если принимать эйнштейновскую теорию относительности всерьез, придется допустить, что пространство-время может само связываться в узлы, приводя к потере информации в их складках. Определение того, может ли информация теряться на самом деле, является одним из важнейших вопросов современной теоретической физики»13).
Вторая нераскрытая тайна черных дыр связана с природой пространства-времени в центре черной дыры14). Прямо применяя формулы общей теории относительности, которыми пользовался Шварцшильд еще в 1916 г., можно показать, что огромные масса и энергия, сосредоточенные в черной дыре, приводят к возникновению разрушительных разрывов ткани пространства-времени, в результате которых оно должно будет закручиваться в конфигурацию с бесконечной кривизной, образуя прокол пространства-времени. Один из выводов, которые делали физики из существования таких сингулярностей, состоял в том, что вся материя, пересекающая горизонт событий черной дыры, будет безвозвратно затянута к центру черной дыры, и с этого момента материя перестанет существовать – внутри черной дыры исчезнет само время. Другие физики, долгое время исследовавшие черные дыры с помощью уравнений Эйнштейна, открыли не укладывающуюся в голове возможность того, что черная дыра может быть окном в другую вселенную, связанную с нашей лишь в центре черной дыры. Грубо говоря, там, где останавливаются стрелки часов нашей Вселенной, начинается отсчет времени вселенной, которая прикреплена к нашей.
Некоторые из следствий этой поразительной перспективы будут рассмотрены в следующей главе, здесь же хочется отметить один важный момент. Нужно вспомнить главный вывод: в экстремальных ситуациях, возникающих при чрезвычайно высоких плотностях ввиду огромных масс и малых размеров, классическая теория Эйнштейна становится неприменимой, и для описания таких ситуаций необходимо ее квантовое обобщение. Здесь напрашивается вопрос о том, может ли для анализа сингулярностей в центре черной дыры оказаться полезной теория струн? Этот вопрос в настоящее время интенсивно исследуется, но из-за возникшей проблемы потери информации он все еще не решен. Теория струн ловко расправляется с множеством сингулярностей других типов, возникающих, например, при разрывах пространства, которые обсуждались в главе 11 и в начале этой главы15. Но если обнаружен один тип сингулярности, это не значит, что все остальные будут иметь тот же характер. Структура пространства может рваться, прокалываться и раздираться многими разными способами. Теория струн дала нам глубокое понимание одних типов сингулярностей, но другие, среди которых и сингулярности черной дыры, до сих пор не поддаются теоретическому описанию. И снова, главная причина этого – невозможность выхода за рамки теории возмущений, которая, в данном случае, затрудняет проведение всестороннего и достоверного анализа того, что происходит внутри черной дыры.
Тем не менее, с учетом последних грандиозных достижений в разработке методов, не опирающихся на теорию возмущений, и успешных применений этих методов к другим задачам теории черных дыр, у теоретиков появились большие надежды на то, что разгадка тайн происходящих в глубине черной дыры явлений уже не за горами.
1. Знающему читателю будет понятно, что при преобразованиях зеркальной симметрии коллапсирующая трехмерная сфера одного пространства Калаби-Яу отображается на коллапсирующую двумерную сферу другого пространства Калаби-Яу, приводя, на первый взгляд, к той же ситуации флоп-перестроек, которая рассматривалась в главе 11. Разница, однако, в том, что в подобном зеркальном описании антисимметричное тензорное поле В v (действительная часть комплексной кэлеровой формы на зеркальном пространстве Калаби-Яу) обращается в нуль, и сингулярность гораздо сильнее, чем в случае, который описывался в главе 11.
2. Более точно, примерами экстремальных черных дыр являются черные дыры с минимальными для данных зарядов массами, в полной аналогии с рассмотренными в главе 12 БПС-состояниями. Такие черные дыры будут играть важнейшую роль при обсуждении энтропии черной дыры.
3. Излучение черной дыры должно быть подобно излучению теплоты раскаленным камином. Это как раз та проблема, которая обсуждалась в главе 4 и сыграла важнейшую роль в развитии квантовой механики.
4. Так как черные дыры, участвующие в конифолдных переходах с разрывом пространства, являются экстремальными, оказывается, что ни при каких малых массах они не излучают по Хокингу.
5. Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1996 г.
6. В первых расчетах Строминджера и Вафы обнаружилось, что математические выкладки становятся проще, если работать с пятью, а не четырьмя протяженными пространственно-временными измерениями. После завершения вычислений энтропии пятимерной черной дыры они с удивлением обнаружили, что еще никто не построил такие гипотетические экстремальные черные дыры в формализме лятимерной обшей теории относительности. А так как результаты можно было проверить лишь сравнив ответ с площадью горизонта событий гипотетической черной дыры, Строминджер и Вафа занялись построением подобной пятимерной черной дыры. И им это удалось. Дальше уже не представляло труда показать, что результат для энтропии в теории струн, полученный на основе анализа микроскопических свойств, согласуется с предсказанием Хокинга, сделанным на основе площади поверхности горизонта событий черной дыры.
После публикации их работы многим теоретикам, среди которых необходимо отметить принстонского физика Кертиса Каллана и его последователей, удалось вычислить энтропию для более привычного случая четырех протяженных пространственно-временных измерений, и все эти вычисления подтвердили правильность предсказания Хокинга.
7. Интервью с Шелдоном Глэшоу, 29 декабря 1997 г.
8. Laplace, Philosophical Essay on Probabilities, trans. Andrew I. Dale. New York: Springer-Verlag, 1995. (См. рус. изд.: Лаплас. Опыт философской теории вероятности. М., 1908.)
9. Цитируется по книге: Stephen Hawking and Roger Penrose, The Nature of Space and Time. Princeton: Princeton University Press, 1995, p. 41. (Рус. пер.: Хокинг С, Пенроуз Р. Природа пространства и времени. Ижевск: РХД, 2000.)
10. Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1997 г.
11. Интервью с Эндрю Строминджером, 29 декабря 1997 г.
12. Интервью с Кумруном Вафой, 12 января I99S г.
13. Лекция Стивена Хокинга, прочитанная на Амстердамском симпозиуме по гравитации, черным дырам и струнам, 21 июня 1997 г.
14. Это в определенной мере связано с вопросом о потере информации, который обсуждается в последние годы. Некоторые физики придерживаются идеи о возможности существования внутри черной дыры «ядра», где хранится вся информация, которую перенесли тела, попавшие под горизонт событий черной дыры.
15. В действительности, конифолдные переходы с разрывом пространства, рассмотренные в этой главе, затрагивают черные дыры. Поэтому может показаться, что анализ снова упирается в проблему сингулярностей черных дыр. Вспомним, однако, что конифолд возникает в тот момент, когда масса черной дыры становится нулевой, следовательно, данный вопрос не имеет прямого отношения к проблеме сингулярностей черных дыр.