1. Предварительное определение вектора
2. Отношения эквивалентности
3. Окончательное определение вектора
4. Векторы на прямой, на плоскости и в пространстве
1. Ориентации прямой
2. Длина и величина вектора на прямой
3. Отношение векторов на прямой
4. Сложение векторов на прямой. Лемма Шаля
5. Алгебраические свойства линейных операций
6. Теорема об изоморфизме
§ 3*. Линейные операции над векторами на плоскости и в пространстве
1. Определение линейных операций
2. Алгебраические свойства линейных операций
3. Линейная зависимость
4. Геометрический смысл линейной зависимости
5. Базисы и координаты
6. Проекции и координаты
7. Преобразование координат при замене базиса
8. Дополнение. Теорема о ранге матрицы
§ 4*. Ориентации прямой, плоскости и пространства
1. Понятие ориентации
2. Правые и левые ориентации
3. Произведения ориентации
4. Стороны прямой на плоскости и плоскости в пространстве
5. Деформации базисов и ориентации
6. Резюме
7. Дополнение. О понятии угла
§ 5*. Метрическая теория векторов
1. Длина вектора и угол между векторами
2. Скалярное произведение векторов
3. Применение скалярного умножения к доказательству геометрических теорем
4. Выражение скалярного произведения в координатах
5. Ортонормированные базисы
6. Ортогональные матрицы
1. Бивекторы
2. Линейные операции над бивекторами
3. Линейная теория бивекторов
4. Метрическая теория бивекторов
5. Тривекторы
6. Векторное и смешанное произведения
1. Отображения и преобразования
2. Кольцо линейных операторов
3. Описание линейных операторов
4. Обратимые линейные операторы
5. Операторы, действующие по равенству координат
6. Обратимые линейные операторы и ориентации
7. Изометричные операторы
8. Свойства изометричных операторов
§ 1. Координаты на прямой, в плоскости и в пространстве
1. Аффинные координаты
2. Замена аффинных координат
3. Деление отрезка в данном отношении
4. Прямоугольные координаты
5. Полярные, сферические и цилиндрические координаты
6. Однородные координаты
§ 2. Уравнения линий и поверхностей
1. Задание линий и поверхностей уравнениями
2. Алгебраические линии
3. Параметрические уравнения линий и поверхностей
§ 3. Координатно-аксиоматическое построение геометрии
1. Основные положения аксиоматического метода
2. Аксиоматика евклидовой геометрии
3. Аксиоматика аффинной геометрии
4. Аффинная геометрия над полем комплексных чисел
5. Вещественно-комплексная геометрия Дополнение. Аксиоматика Гильберта
1. Прямая как линия первого порядка
2. Параметрические и канонические уравнения прямой
3. Взаимное расположение прямых на плоскости
4. Полуплоскости, на которые прямая разбивает плоскость
5. Прямая на евклидовой плоскости
§ 2*. Плоскость в пространствеа
1. Плоскость как поверхность первого порядка
2. Параметрические уравнения плоскости
3. Взаимное расположение плоскостей в пространстве
4. Полупространства, на которые плоскость разбивает пространство
5. Плоскость в евклидовом пространстве
1. Прямая в аффинном пространстве
2. Взаимное расположение прямых и плоскостей
3. Прямая в евклидовом пространстве
4. Расстояние между двумя прямыми в пространстве
§ 1. Геометрия прямых на плоскости
1*. Пучки прямых
2. Расширенная плоскость
3. Полнота и непротиворечивость аксиом геометрии расширенной плоскости
4. Координаты на расширенной плоскости
5. Проективная плоскость
6. Интерпретации проективной геометрии и их применения
7. Конфигурационная геометрия
Дополнение. Трилинейные координаты
§ 2. Геометрия плоскостей в пространстве
1*. Пучки плоскостей
2*. Связки плоскостей
3. Расширенное пространство
4. Проективное пространство
Дополнение. О геометрии прямых в пространстве
§ 3. Геометрия окружностей на плоскости
1. Степень точки относительно окружности
2. Связки окружностей
3. Пучки окружностей
4. Пучки как пересечения связок
5. Прямые как окружности
6. Окружности на вещественно-комплексной плоскости
Дополнение. Геометрии параболической и гиперболической связок
1. Параболы
2. Эллипсы
3. Гиперболы
4. Уравнения эллипса, параболы и гиперболы в полярных координатах
§ 2. Некоторые дополнительные свойства линий второго порядка
1. Эллипс, парабола и гипербола как конические сечения
2. Взаимное расположение конических сечений и прямых
3. Прямые, касающиеся конических сечений
4. Семейства софокусных эллипсов и гипербол
5. Диаметры конических сечений
6. Теоремы Аполлония
§ 3*. Поверхности второго порядка
1. Эллипсоиды
2. Двуполостные гиперболоиды
3. Однополостные гиперболоиды
4. Прямолинейные образующие однополостного гиперболоида
5. Гиперболические параболоиды
6. Эллиптические параболоиды
7. Конусы второго порядка
8. Цилиндры второго порядка
§ 1*. Классификация линий второго порядка
1. Линии второго порядка на евклидовой плоскости
2. Инварианты уравнений линий второго порядка
3. Определение вида линии второго порядка по инвариантам ее уравнения
4. Линии второго порядка на аффинной плоскости. Теорема единственности
5. Центры линий второго порядка
6. Асимптоты и диаметры линий второго порядка
7. Приведение уравнений линий второго порядка к простейшему виду
8. Главные направления и диаметры линий второго порядка
Дополнение. Классификация поверхностей второго порядка
§ 2. Проективная теория линий второго порядка
1. Линии второго порядка на аффинно-проективной и проективной плоскостях
2. Пересечение прямой и линии второго порядка
3. Поляры и полюсы
Дополнение. Поляры в пространстве
4. Теорема Безу
Дополнение. Дифференциально-геометрическое истолкование кратности точки пересечения
§ 3. Геометрия линий второго порядка
1. Пучки линий второго порядка
2. Описание пучков линий второго порядка
Дополнение. Еще раз о пучках окружностей
3. Линии второго порядка, проходящие через пять точек
Дополнение. Поверхности второго порядка, проходящие через девять точек
4. Теорема Штурма
5. Теорема Паскаля
6. Квадратичные пучки прямых
7. Фокусы линий второго порядка
§ 1. Аффинные, проективные и ортогональные преобразования
1. Аффинные преобразования
2. Линейный оператор, индуцированный аффинным преобразованием
3. Общий вид аффинных преобразований
4. Проективные преобразования
5. Ортогональные преобразования
§ 2. Разложение аффинных и ортогональных преобразований в композицию более простых
1. Аффинные и ортогональные преобразования прямой
2. Разложение аффинных преобразований плоскости и пространства
3. Разложение ортогональных преобразований плоскости
4. Разложение ортогональных преобразований пространства
5. Представление движений пространства с помощью кватернионов
§ 3. Конформные преобразования
1. Инверсия относительно окружности
2. Пополненная плоскость
3. Свойства конформных преобразований
4. Конформные преобразования и ориентации
5. Конформная геометрия
1. Геометрии с данной группой автоморфизмов
2. Простейшие геометрии аффинного типа
3. Геометрии Галилея и Пуансо
4. Геометрия Минковского
5. Комплексная евклидова геометрия
6. Унитарная геометрия
7. Геометрия Пуанкаре — Лобачевского